JEE Class Companion Physics

For JEE Main and Advanced

Module-1

Chapter 1 Unit and Dimension

Chapter 2 Vector and Calculus

Chapter 3 Kinematics

Chapter 4 Error

Motion Education Pvi. Lid., 394 - Rajeev Gandhi Nagar, Kota-5 (Raj.)
© : 1800-212-1799, 8003899588 | url:www.motion.ac.in \| $\otimes:$ info@motion.ac.in

All rights reserved. No part of this work herein should be reproduced or used either graphically, electronically, mechanically or by recording, photocopying, taping, web distributing or by storing in any form and retrieving without the prior written permission of the publisher. Anybody violating this is liable to be legally prosecuted.

Motion Education Pvi. Lid., 394 - Rajeev Gandhi Nagar, Kota-5 (Raj.)
(c):1800-212-1799, 8003899588 | url :www.motion.ac.in \| $\otimes:$ info@motion.ac.in

Contents

Chapter-1 Unit and Dimension	1.5
Section A - Units	
Physical Quantities	1.7
Fundamental	1.7
Derived	1.7
Supplementry	1.7
Magnitude	1.7
Unit	1.8
Principle System of Unit	1.8
Supplementry units	1.8
Definitions of some important SI Units	1.8
SI Prefixes	1.9
General Guidelines for Using Symbols	
for SI Units, Some Other Units,	
Some Other Units, and SI Prefixes	1.9
Characteristics of base Units or Standards	1.11
Some Special Types of Units	1.11
Section B - Dimensions	
Diamensions	1.11
Dimensional Formula	1.11
Section C-Use of Dimensions	
Use of Dimensions	1.14
Conversion of Units	1.14
To Check the Dimensional Correctness	
of a Given Physical Equation	1.14
Principle of Homogenetiy of Dimensions	1.14
To Establish the Relation Among	
Various Physical Quantities	1.15
Limitations of Dimensional Analysis	1.15

Section D - Basic Mathematics	
Mensuration Formulas	
Logariths	1.16
Trigonometric Properties	1.17
\quad Measurement of angle \& Relationship	
\quad Between \& Degrees and Radian	1.17
\quad Measurement of Positive	
\quad and Negative Angles	1.18
\quad Six Basic Trigonometric Functions	1.18
Values of sin θ, cos θ and tan θ for	
some standard angles	1.19
Important Formulas	1.20
Small Angle Approximation	1.20
Binomial Theorem	1.21
Graphs	1.21
Similar Triangle	1.23
Exercise	1.24
Answer Key	1.35

Chapter-2 Vector and Calculus

Section A -

Definition of Vector and Angle between Vectors, Addition of Vectors, Subtraction of Vectors

Scalar
Vector 2.1
General Points Regarding Vector2.1

Representation of Vector 2.1

Angle between two vectors $(\theta) \quad 2.2$
Negative of Vector 2.2
Equality of Vector 2.2
Collinear Vectors 2.3
Co-initial Vector 2.3
Coplanar Vectors 2.3

Multiplication and Division of	
a Vector by a Scalar	2.3
Laws of Addition and Subtraction Vectors	2.3
Triangle rule of Addition	2.3
Polygon Law of Addition	2.4
Parallelogram Law of Addition	2.4
Subtraction of Vector	2.5
Unit Vector and Zero Vector	2.6
Section B - Resolution of Vectors, Product of	
Vectors	
Resolution of Vectors	2.7
Resolution along Rectangular Component	2.7
Resolution in Two Dimension	2.7
Procedure to Solve in Vector Equation	2.9
Short - Method	2.11
Addition and Subtraction in Component Form	2.11
Multiplication of Vectors	
(The Scalar and Vector Products)	2.12
Scalar Product	2.12
Vector Product	2.14
Right - Hand - Thumb Rule	2.14
Position Vector	2.16
Displacement Vector	2.16
CALCULUS	
Constant	2.16
Variable	2.16
Function	2.16

(An Arbitrary Constant Should Be Added	
to Each of These Integrals)	2.28
Definite Integration or Integration with Limits	2.30
Application of Definite Integral	2.30
Exercise	2.32
Answer Key	2.46

Chapter-3 Kinematics
 Section A - Distance, Displacement, Velocity and Acceleration, Equation of Motion

Rest and Motion 3.1

Section B - Motion Under Gravity
Motion Under Gravity3.9
Section C - Graphs
Graphs 3.13
Straight Line 3.13
Parabola 3.14
Reading of Graphs 3.14
Basis of Given Information 3.16Conversion of Velocity v/s timeGraph to Speed v/s Time Graph3.18
Conversion of displacement v / s
Time Graph to Distance v/s Time Graph 3.18
Conversion of $v-t$ Graphs of to$\mathrm{x}-\mathrm{t}$ and a-t Graphs3.18
Reading of Graphs if the Motion of twoBodies are Sketched on The Same Axes.3.18
Section - D Variable Acceleration
Variable Acceleration 3.21
When Acceleration is given as a Function of x 3.21 of Velocity 3.21
When Acceleration is given as a Function of t 3.21
Section - E Ground-to Ground projectile Motion, Equation of Trajectory, Projectile from tower, Projectile Motion in Inclined plane
Two Dimension Motion or Motion in a Plan 3.22
Projectile Motion 3.22
Projectile Fired Parallel to Horizontal 3.22
Projectile at an Angle θ From Height h 3.24
Projectile Motion in Inclined Plane 3.25
Section F - Relative Motion
Relative Motion 3.31
Section G - River Boat Problems
River Boat Problems 3.35
Section H - Rain Problems, Aircraft windproblems, Relative Motion between twoprojectiles
Aircraft Wind Problems 3.38
Rain Problems 3.39
Exercise 3.44
Answer Key 3.78

[^0]| Chapter-4 Error | |
| :---: | :---: |
| Section A - Significant digits, Rounding off \& mathematical operation, Types of Erros | |
| Absolute Error | 4.1 |
| Relative (or Fractional) Error | 4.1 |
| Significant Digits | 4.2 |
| Measured Values | 4.2 |
| Computed Value | 4.2 |
| Section B,C - Mathematical operation with | |
| Errors, Instruments (Vernier Callipers, Screw | |
| Gauge)+Searle's Method (Y)+u-v Method Exp. | |
| Measurement of length(i) | 4.4 |
| Vernier Callipers | 4.4 |
| Least count of Vernier Callipers | 4.5 |
| Length as measured by Vernier | |
| Callipers | 4.5 |
| Screw gauge (or micrometer screw) | 4.6 |
| Measurement of g using a simple | |
| pendulum | 4.7 |

Section B,C Mathematical operation withLeast count of Vernier Callipers 4.5Length as measured by VernierCallipers4.5Measurement of g using a simplependulum4.7

Determination of Young's Modulus by

Serale's Method 4.8
Specific Heat of a liquid using a calorimeter :

Focal length of concave mirror and a
convex lens using the u-v method.
Index Error or Bench Error
and its correction :

Parallax 4.10
Speed of sound using resonance
column
Verification of Ohm's law using
voltmeter and ammeter
Specific resistance of the material
of a wire using a meter bridge :
Measurement of unknown resistanc
using a P.O. Box
Exercise
Answer Key 4.28

Syllabus

- Unit Dimension and Basic Mathematics

Physics, SI units, Fundamental and derived units. Dimensions of Physical quantities, dimensional analysis and its applications.

- Kinematics

Kinematics in one and two dimensions (Cartesian coordinates only), Projectiles; Relative velocity.

- Errors

Least count, significant figures; Methods of measurement and error analysis for physical quantities pertaining to the experiments.

CHAPTER

Unit \& Dimensions

SECTION A - UNITS

1. PHYSICAL QUANTITY

The quantites which can be measured by an instrument and by means of which we can describe the laws of physics are called physical quantities.

Types of physical quantities :

1.1 Fundamental

Although the number of physical quantities that we measure is very large, we need only a limited number of units for expressing all the physical quantities since they are interrelated with one another. So, certain physical quantities have been chosen arbitrarily and their units are used for expressing all the physical quantities, such quantities are known as Fundamental, Absolute or Base Quantities (such as length, time and mass in mechanics)
(i) All other quantites may be expressed in terms of fundamental quantities.
(ii) They are independent of each other and cannot be obtained from one another.

An international body named General Conference on Weights and Measures chose seven physical quantities as fundamental :
(1) length
(2) mass
(3) time
(4) electric current,
(5) thermodynamic temperature
(6) amount of substance
(7) luminous intensity.

Note

These are also called as absolute or base quantities. In mechanics, we treat length, mass and time as the three basic or fundamental quantities.
1.2 Derived : Physical quantities which can be expressed as combination of base quantities are called as derived quantities.

For example : Speed, velocity, acceleration, force, momentum, pressure, energy etc.

EXAMPLE 1

Speed $=\frac{\text { distance }}{\text { time }}=\frac{\text { length }}{\text { time }}$
1.3 Supplementary : Beside the seven fundamental physical quantities two supplementary quantities are also defined, they are :
(1) Plane angle
(2) Solid angle.

Note

The supplementary quantities have only units but no dimensions.

2. MAGNITUDE :

Magnitude of physical quantity $=$ (numerical value)
Magnitude of a physical quantity is always constant. It is independent of the type of unit.
\Rightarrow numerical value $\propto \frac{1}{\text { unit }}$
or $\quad n_{1} u_{1}=n_{2} u_{2}=$ constant

EXAMPLE 2

Length of a metal rod bar is unchanged whether it is measured as 2 metre or 200 cm .

Observe the change in the Numerical value (from 2 to 200) as unit is changed from metre to cm .

3. UNIT :

Measurement of any physical quantity is expressed in terms of an internationally accepted certain basic reference standard called unit.
The units for the fundamental or base quantities are called fundamental or base unit. Other physical quantities are expressed as combination of these base units and hence, called derived units.
A complete set of units, both fundamental and derived is called a system of unit.

3.1. Principle systems of Unit

There are various system in use over the world : CGS, FPS, SI (MKS) etc
Table 1 : Units of some physical quantities in different systems.

	Physical Quantity	System		
		$\begin{gathered} \text { CGS } \\ \text { (Gaussian) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MKS } \\ \text { (SI) } \\ \hline \end{gathered}$	FPS (British)
Fundam ental	Length	centimeter	meter	foot
	Mass	gram	kilogram	pound
	Time	second	second	second
Derived	Force	dyne	newton $\rightarrow \mathrm{N}$	poundal
	Work or Energy	erg	joule \rightarrow J	ft-poundal
	Power	erg/s	watt \rightarrow W	ft-poundal/s

3.2 Supplementary units:

(1) Plane angle : radian (rad)
(2) Solid angle : steradian (sr)

* The SI system is at present widely used throughout the world. In IIT JEE only SI system is followed.

3.3 Definitions of some important SI

 Units(i) Metre : $1 \mathrm{~m}=1,650,763.73$ wavelengths in vaccum, of radiation corresponding to organ-red light of krypton-86.
(ii) Second : $1 \mathrm{~s}=9,192,631,770$ time periods of a particular from Ceasium - 133 atom.
(iii) Kilogram: $1 \mathrm{~kg}=$ mass of 1 litre volume of water at $4^{\circ} \mathrm{C}$
(iv) Ampere: It is the current which when flows through two infinitely long straight conductors of negligible cross-section placed at a distance of one metre in vacuum produces a force of $2 \times 10^{-7} \mathrm{~N} / \mathrm{m}$ between them.
(v) Kelvin : $1 \mathrm{~K}=1 / 273.16$ part of the thermodynamic temperature of triple point of water.
(vi) Mole : It is the amount of substance of a system which contains as many elementary particles (atoms, molecules, ions etc.) as there are atoms in 12 g of carbon - 12 .
(vii) Candela : It is luminous intensity in a perpendicular direction of a surface of $\left(\frac{1}{600000}\right) \mathrm{m}^{2}$ of a black body at the temperature of freezing point under a pressure of $1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$.
(viii) Radian : It is the plane angle between two radiia of a circle which cut-off on the circumference, an arc equal in length to the radius.
(ix) Steradian : The steradian is the solid angle which having its vertex at the centre of the sphere, cut-off an area of the surface of sphere equal to that of a square with sides of length equal to the radius of the sphere.

EXAMPLE 3

Find the SI unit of speed, acceleration

Sol. \quad speed $=\frac{\text { distance }}{\text { time }}=\frac{\text { meter }(m)}{\sec \text { ond }(s)}=m / s \quad$ (called as meter per second)

$$
\begin{aligned}
\text { acceleration } & =\frac{\text { velocity }}{\text { time }}=\frac{\text { displacement } / \text { time }}{\text { time }} \\
= & \frac{\text { displacement }}{(\text { time })^{2}}=\frac{\text { meter }}{\sec \text { ond }^{2}}=\mathrm{m} / \mathrm{s}^{2}
\end{aligned}
$$

(called as meter per second square)

4. S I PREFIXES

The magnitudes of physical quantities vary order a wide range. The CGPM recommended standard prefixes for magnitude too large or too small to be expressed more compactly for certain power of 10 .

Power of 10	Prefix	Symbol	Power of 10	Prefix	Symbol
10^{18}	exa	E	10^{-1}	deci	d
10^{15}	peta	P	10^{-2}	centi	c
10^{12}	tera	T	10^{-3}	milli	m
10^{9}	giga	G	10^{-6}	micro	
10^{6}	mega	M	10^{-9}	nano	n
10^{3}	kilo	k	10^{-12}	pico	p
10^{2}	hecto	h	10^{-15}	femto	f
10^{1}	deca	da	10^{-18}	atto	a

5. GENERAL GUIDELINES FOR USING SYMBOLS FOR SI UNITS, SOME OTHER UNITS, AND SI PREFIXES
(a) Symbols for units of physical quantities are printed/ written in Roman (upright type), and not in italics

For example: 1 N is correct but 1 N is incorrect
(b) (i) Unit is never written with capital initial letter even if it is named after a scientist.

For example : SI unit of force is newton (correct) Newton (incorrect)
(ii) For a unit named after a scientist, the symbol is a capital letter.

But for other units, the symbol is NOT a capital letter.

For example :

force	\rightarrow	newton (N)
energy	\rightarrow	joule (J)
electric current	\rightarrow	ampere (A)
temperature	\rightarrow	kelvin (K)
frequency	\rightarrow	$\operatorname{hertz}(\mathrm{Hz})$

For example :

length	\rightarrow	meter (m)
mass	\rightarrow	kilogram (kg)
luminous intensity	\rightarrow	candela (cd)
time	\rightarrow	second (s)

Note

The single exception is L , for the unit litre.
(c) Symbols for units do not contain any final full stop all the end of recommended letter and remain unaltered in the plural, using only singular form of the unit.

For example :

Quantity	Correct	Incorrect
25 centimeters	25 cm	25 c m 25 cms.

(d) Use of solidus (/) is recommended only for indicating a division of one letter unit symbol by another unit symbol. Not more than one solidus is used.

For example :

Correct	Incorrect
$\mathrm{m} / \mathrm{s}^{2}$	$\mathrm{~m} / \mathrm{s} / \mathrm{s}$
$\mathrm{N} \mathrm{s} / \mathrm{m}^{2}$	$\mathrm{~N} \mathrm{~s} / \mathrm{m} / \mathrm{m}$
$\mathrm{J} / \mathrm{K} \mathrm{mol}$	$\mathrm{J} / \mathrm{K} / \mathrm{mol}$
$\mathrm{kg} / \mathrm{m} \mathrm{s}$	$\mathrm{kg} / \mathrm{m} / \mathrm{s}$

(e) Prefix symbols are printed in roman (upright) type without spacing between the prefix symbol and the unit symbol. Thus certain approved prefixes written very close to the unit symbol are used to indicate decimal fractions or multiples of a SI unit, when it is inconveniently small or large.

For example

megawatt	$1 \mathrm{MW}=10^{6} \mathrm{~W}$
centimetre	$1 \mathrm{~cm}=10^{-2} \mathrm{~m}$
kilometre	$1 \mathrm{~km}=10^{3} \mathrm{~m}$
millivolt	$1 \mathrm{mV}=10^{-3} \mathrm{~V}$
kilowatt-hour	$1 \mathrm{~kW} \mathrm{~h}=10^{3} \mathrm{~W} \mathrm{~h}=3.6$ $\mathrm{M} \mathrm{J}=3.6 \times 10^{6} \mathrm{~J}$
microampere	$1 \mu \mathrm{~A}=10^{-6} \mathrm{~A}$
angstrom	$1 \AA=0.1 \mathrm{~nm}==10^{-10} \mathrm{~m}$
nanosecond	$1 \mathrm{~ns}=10^{-9} \mathrm{~s}$
picofarad	$1 \mathrm{pF}=10^{-12} \mathrm{~F}$
microsecond	$1 \mu \mathrm{~s}=10^{-6} \mathrm{~s}$
gigahertz	$1 \mathrm{GHz}=10^{9} \mathrm{~Hz}$
micron	$1 \mu \mathrm{~m}=10^{-6} \mathrm{~m}$

The unit 'fermi', equal to a femtometre or $10^{-15} \mathrm{~m}$ has been used as the convenient length unit in nuclear studies.
(f) When a prefix is placed before the symbol of a unit, the combination of prefix and symbol is considered as a new symbol, for the unit, which can be raised to a positive or negative power without using brackets. These can be combined with other unit symbols to form compound unit.

For example:

Quantity	Correct	Incorrect
cm^{3}	$(\mathrm{cm})^{3}=(0.01 \mathrm{~m})^{3}=$ $\left(10^{-2} \mathrm{~m}\right)^{3}=10^{-6} \mathrm{~m}^{3}$	$0.01 \mathrm{~m}^{3}$ or $10^{-2} \mathrm{~m}^{3}$
$\mathrm{~mA}^{2}$	$(\mathrm{mA})^{2}=(0.001 \mathrm{~A})^{2}=$ $\left(10^{-3} \mathrm{~A}\right)^{2}=10^{-6} \mathrm{~A}^{2}$	$0.001 \mathrm{~A}^{2}$

(g) A prefix is never used alone. It is always attached to a unit symbol and written or fixed before the unit symbol.

For example :

$10^{3} / \mathrm{m}^{3}=1000 / \mathrm{m}^{3}$ or $1000 \mathrm{~m}^{-3}$, but not $\mathrm{k} / \mathrm{m}^{3}$ or k m^{-3}.
(h) Prefix symbol is written very close to the unit symbol without spacing between them, while unit symbols are written separately with spacing with units are multiplied together.

For example :

Quantity	Correct	Incorrect
$1 \mathrm{~ms}^{-1}$	1 metre per second	1 milli per second
1 ms	1 millisecond	1 metre second
1 Cm	1 coulomb metre	1 centimetre
1 cm	1 centimetre	1 coulomb metre

(i) The use of double profixes is avoided when single prefixes are available.

For example :

Quantity	Correct	Incorrect
$10^{-9} \mathrm{~m}$	1 nm (nanometre)	$1 \mathrm{~m} \mathrm{\mu m} \mathrm{(milli} \mathrm{micrometre)}$ (10-6 m
$1 \mu \mathrm{~m}$ (micron)	1 m m m (milli millimetre)	
$10^{-12} \mathrm{~F}$	1 pF (picofarad)	$1 \mu \mu \mathrm{~F}$ (micro microfarad)
$10^{9} \mathrm{~F}$	1 GW (giga watt)	1 kM W (kilo megawatt)

(j) The use of a combination of unit and the symbols for unit is avoided when the physical quantity is expressed by combining two or more units.

Quantity	Correct	Incorrect
joule per mole Kelvin	$\mathrm{J} / \mathrm{mol} \mathrm{K}^{2}$ or $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$	Joule / mole K or J/mol Kelvin or J/mole K
newton metre second	Nm s	newton m second or N m second or N metre s or newton metre s

5.1. Characteristics of base units or Section B-Dimensions

 standards:(A) Well defined
(B) Accessibility
(C) Invariability
(D) Convenience in use
5.2 Some special types of units :

1. 1 Micron $(1 \mu)=10^{-4} \mathrm{~cm}=10^{-6} \mathrm{~m}$ (length)
2. 1 Angstrom $(1 \AA)=10^{-8} \mathrm{~cm}=10^{-10} \mathrm{~m}$ (length)
3. 1 fermi $(1 \mathrm{f})=10^{-13} \mathrm{~cm}=10^{-15} \mathrm{~m}$ (length)
4. 1 inch $=2.54 \mathrm{~cm}$ (length)
5. 1 mile $=5280$ feet $=1.609 \mathrm{~km}$ (length)
6. 1 atmosphere $=10^{5} \mathrm{~N} / \mathrm{m}^{2}=76$ torr $=76 \mathrm{~mm}$ of Hg pressure (pressure)
7. 1 litre $=10^{-3} \mathrm{~m}^{3}=1000 \mathrm{~cm}^{3}$ (volume)
8. 1 carat $=0.0002 \mathrm{~kg}$ (weight)
9. $\quad 1$ pound $(\mathrm{Ib})=0.4536 \mathrm{~kg}($ weight $)$

Note

The student can now attempt section A from exercise.

6. DIMENSIONS

Dimensions of a physical quantity are the power to which the fundamental quantities must be raised to represent the given physical quantity.

For example, \quad density $=\frac{\text { mass }}{\text { volume }}=\frac{\text { mass }}{(\text { length })^{3}}$
or \quad density $=($ mass $)(\text { length })^{-3}$
Thus, the dimensions of density are 1 in mass and 3 in length. The dimensions of all other fundamental quantities are zero.
For convenience, the fundamental quantities are represented by one letter symbols. Generally mass is denoted by M , length by L , time by T and electric current by A.
The thermodynamic temperature, the amount of substance and the luminous intensity are denoted by the symbols of their units K , mol and cd respectively. The physical quantity that is expressed in terms of the base quantities is enclosed in square brackets.
$[\sin \theta]=[\cos \theta]=[\tan \theta]=\left[\mathrm{e}^{\mathrm{x}}\right]=\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$

7. DIMENSIONAL FORMULA

It is an expression which shows how and which of the fundalmental units are required to represent the unit of physical quantity.

Quantity	Symbol	Formula	S.I. Unit	D.F.
Displacement	s	ℓ	Metre or m	$\mathrm{M}^{0} \mathrm{LT}^{0}$
Area	A	$\ell \times \mathrm{b}$	$\left(\right.$ Metre) ${ }^{2}$ or m^{2}	$\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{0}$
Volume	V	$\ell \times \mathrm{b} \times \mathrm{h}$	(Metre) ${ }^{3}$ or m^{3}	$\mathrm{M}^{0} \mathrm{~L}^{3} \mathrm{~T}^{0}$
Velocity	v	$\mathrm{v}=\frac{\Delta \mathrm{s}}{\Delta \mathrm{t}}$	m / s	$\mathrm{M}^{0} \mathrm{LT}^{-1}$
Momentum	p	$\mathrm{p}=\mathrm{mv}$	kgm/s	MLT ${ }^{-1}$
Acceleration	a	$\mathrm{a}=\frac{\Delta \mathrm{v}}{\Delta \mathrm{t}}$	$\mathrm{m} / \mathrm{s}^{2}$	$\mathrm{M}^{0} \mathrm{LT}^{-2}$
Force	F	$\mathrm{F}=\mathrm{ma}$	Newton or N	MLT ${ }^{-2}$
Impulse	-	$\mathrm{F} \times \mathrm{t}$	N.sec	MLT ${ }^{-1}$
Work	W	F.d	N. m	$\mathrm{ML}^{2} \mathrm{~T}^{-2}$
Energy	KE or	K.E. $=\frac{1}{2} \mathrm{mv}^{2}$	Joule or J	$\mathrm{ML}^{2} \mathrm{~T}^{-2}$

P.E. $=\mathrm{mgh}$
Power $\quad P \quad P=\frac{W}{t} \quad$ watt or $W \quad M L^{2} T^{-3}$

Density	d	$\mathrm{d}=$ mass/volume	$\mathrm{kg} / \mathrm{m}^{3}$	$\mathrm{ML}^{-3} \mathrm{~T}^{0}$
Pressure	P	$\mathrm{P}=\mathrm{F} / \mathrm{A}$	Pascal or Pa	$\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
Torque	τ	$\tau=r \times F$	N.m.	$\mathrm{ML}^{2} \mathrm{~T}^{-2}$
Angular displacement	θ	$\theta=\frac{\operatorname{arc}}{\text { radius }}$	radian or rad	$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$
Angular velocity	ω	$\omega=\frac{\theta}{t}$	$\mathrm{rad} / \mathrm{sec}$	$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}$
Angular acceleration	α	$\alpha=\frac{\Delta \omega}{\Delta t}$	$\mathrm{rad} / \mathrm{sec}^{2}$	$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-2}$
Moment of Inertia	I	$\mathrm{I}=\mathrm{mr}^{2}$	$\mathrm{kg}-\mathrm{m}{ }^{2}$	$\mathrm{ML}^{2} \mathrm{~T}^{0}$
Frequency	v or f	$\mathrm{f}=\frac{1}{\mathrm{~T}}$	hertz or Hz	$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}$
Stress	-	F/A	$\mathrm{N} / \mathrm{m}^{2}$	$\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
Strain	-	$\frac{\Delta \ell}{\ell} ; \frac{\Delta \mathrm{A}}{\mathrm{~A}} ; \frac{\Delta \mathrm{V}}{\mathrm{~V}}$	-	$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$
Youngs modulus	Y	$\mathrm{Y}=\frac{\mathrm{F} / \mathrm{A}}{\Delta \ell / \ell}$	$\mathrm{N} / \mathrm{m}^{2}$	$\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
(Bulk modulus of rigidity)				
Surface tension	T	$\frac{\mathrm{F}}{\ell}$ or $\frac{\mathrm{W}}{\mathrm{A}}$	$\frac{\mathrm{N}}{\mathrm{m}} ; \mathrm{J}^{\text {m }}$	$\mathrm{ML}^{0} \mathrm{~T}^{-2}$
Force constant (spring)	k	$\mathrm{F}=\mathrm{kx}$	N / m	$\mathrm{ML}^{0} \mathrm{~T}^{-2}$
Coefficient of viscosity	η	$F=\eta\left(\frac{d v}{d x}\right) A$	$\mathrm{kg} / \mathrm{ms}$ (poise in C.G.S.)	$\mathrm{ML}^{-1} \mathrm{~T}^{-1}$
Gravitation constant	G	$\mathrm{F}=\frac{\mathrm{Gm}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}}$	$\frac{\mathrm{N}-\mathrm{m}^{2}}{\mathrm{~kg}^{2}}$	$\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}$
Gravitational potential	V_{g}	$\mathrm{V}_{\mathrm{g}}=\frac{\mathrm{PE}}{\mathrm{m}}$	$\frac{\mathrm{J}}{\mathrm{kg}}$	$\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{-2}$
Temperature	θ	-	Kelvin or K	$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0} \theta^{+1}$
Heat	Q	$\mathrm{Q}=\mathrm{m} \times \mathrm{S} \times \Delta \mathrm{t}$	Joule or Calorie	$\mathrm{ML}^{2} \mathrm{~T}^{-2}$
Specific heat	S	$\mathrm{Q}=\mathrm{m} \times \mathrm{S} \times \Delta \mathrm{t}$	$\frac{\text { Joule }}{\text { kg.Kelvin }}$	$\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{-2} \theta^{-1}$
Latent heat	L	$\mathrm{Q}=\mathrm{mL}$	$\frac{\text { Joule }}{\mathrm{kg}}$	$\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{-2}$
Coefficient of thermal	K	$\mathrm{Q}=\frac{\mathrm{KA}\left(\theta_{1}-\theta_{2}\right) \mathrm{t}}{\mathrm{~d}}$	$\frac{\text { Joule }}{\mathrm{msec} \mathrm{~K}}$	$\mathrm{MLT}^{-3} \theta^{-1}$
conductivity				
Universal gas constant	R	$\mathrm{PV}=\mathrm{nRT}$	$\frac{\text { Joule }}{\mathrm{mol.K}}$	$\mathrm{ML}^{2} \mathrm{~T}^{-2} \theta^{-1}$
Mechanical equivalent of heat	J	$\mathrm{W}=\mathrm{JH}$	-	$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$

Charge	Q or q	$\mathrm{I}=\frac{\mathrm{Q}}{\mathrm{t}}$	Coulomb or C	$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{TA}$
Current	I	-	Ampere or A	$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0} \mathrm{~A}$
Electric permittivity	ε_{0}	$\varepsilon_{0}=\frac{1}{4 \pi \mathrm{~F}} \cdot \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}}$	$\frac{(\text { coul. })^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}} \text { or } \frac{\mathrm{C}^{2}}{\mathrm{~N}-\mathrm{m}^{2}}$	$\mathrm{M}^{-1} \mathrm{~L}^{-3} \mathrm{~T}^{4} \mathrm{~A}^{2}$
Electric potential	V	$\mathrm{V}=\frac{\Delta \mathrm{W}}{\mathrm{q}}$	Joule/coul	$\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}$
Intensity of electric field	E	$E=\frac{F}{q}$	N/coul.	MLT ${ }^{-3} \mathrm{~A}^{-1}$
Capacitance	C	$\mathrm{Q}=\mathrm{CV}$	Farad	$\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{~A}^{2}$
Dielectric constant	ε_{r}	$\varepsilon_{\mathrm{r}}=\frac{\varepsilon}{\varepsilon_{0}}$	-	$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$
or relative permittivity				
Resistance	R	$\mathrm{V}=\mathrm{IR}$	Ohm	$\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}$
Conductance	S	$\mathrm{S}=\frac{1}{\mathrm{R}}$	Mho	$\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{-3} \mathrm{~A}^{2}$
Specific resistance	ρ	$\rho=\frac{\mathrm{RA}}{\ell}$	Ohm \times meter	$\mathrm{ML}^{3} \mathrm{~T}^{-3} \mathrm{~A}^{-2}$
or resistivity				
Conductivity or	s	$\sigma=\frac{1}{\rho}$	Mho/meter	$\mathrm{M}^{-1} \mathrm{~L}^{-3} \mathrm{~T}^{3} \mathrm{~A}^{2}$
specific conductance				
Magnetic induction	B	$\begin{aligned} & \mathrm{F}=\mathrm{qvB} \sin \theta \\ & \text { or } \mathrm{F}=\mathrm{BIL} \end{aligned}$	Tesla or weber $/ \mathrm{m}^{2}$	$\mathrm{MT}^{-2} \mathrm{~A}^{-1}$
Magnetic flux	ϕ	$\mathrm{e}=\frac{\mathrm{d} \phi}{\mathrm{dt}}$	Weber	$\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-1}$
Magnetic intensity	H	$\mathrm{B}=\mu \mathrm{H}$	A/m	$\mathrm{M}^{0} \mathrm{~L}^{-1} \mathrm{~T}^{0} \mathrm{~A}$
Magnetic permeability	μ_{0}	$\mathrm{B}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{Idl} \sin \theta}{\mathrm{r}^{2}}$	$\frac{\mathrm{N}}{\mathrm{amp}^{2}}$	$\mathrm{MLT}^{-2} \mathrm{~A}^{-2}$
of free space or medium				
Coefficient of self or	L	$\mathrm{e}=\mathrm{L} \cdot \frac{\mathrm{dI}}{\mathrm{dt}}$	Henery	$\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}$
Mutual inductance				
Electric dipole moment	p	$\mathrm{p}=\mathrm{q} \times 2 \ell$	C.m.	M ${ }^{0}$ LTA
Magnetic dipole moment	M	$\mathrm{M}=$ NIA	amp.m ${ }^{2}$	$\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{AT}^{0}$

Note

The student can now attempt section B from exercise.

SECTION C - USE OF DIMENSIONS

8. USE OF DIMENSIONS

Theory of dimensions have following main uses :

8.1 Conversion of units :

This is based on the fact that the product of the numerical value (n) and its corresponding unit (u) is a constant, i.e.,
$\mathrm{n}[\mathrm{u}]=$ constant \quad or $\quad \mathrm{n}_{1}\left[\mathrm{u}_{1}\right]=\mathrm{n}_{2}\left[\mathrm{u}_{2}\right]$
Suppose the dimensions of a physical quantity are a in mass, b in length and c in time. If the fundamental units in one system are M_{1}, L_{1} and T_{1} and in the other system are M_{2}, L_{2} and T_{2} respectively. Then we can write.

$$
\begin{equation*}
\mathrm{n}_{1}\left[\mathrm{M}_{1}^{\mathrm{a}} \mathrm{~L}_{1}^{\mathrm{b}} \mathrm{~T}_{1}^{\mathrm{c}}\right]=\mathrm{n}_{2}\left[\mathrm{M}_{2}^{\mathrm{a}} \mathrm{~L}_{2}^{\mathrm{b}} \mathrm{~T}_{2}^{\mathrm{c}}\right] \tag{i}
\end{equation*}
$$

Here n_{1} and n_{2} are the numerical values in two system of units respectively. Using Eq. (i), we can convert the numerical value of a physical quantity from one system of units into the other system.

EXAMPLE 4

The value of gravitation constant is $\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$ in SI units. Convert it into CGS system of units.
Sol. The dimensional formula of G is $\left[M^{-1} L^{3} T^{-2}\right]$.
Using equation number (i), i.e.,

$$
\begin{aligned}
& \mathrm{n}_{1}\left[\mathrm{M}_{1}^{-1} \mathrm{~L}_{1}^{3} \mathrm{~T}_{1}^{-2}\right]=\mathrm{n}_{2}\left[\mathrm{M}_{2}^{-1} \mathrm{~L}_{2}^{3} \mathrm{~T}_{2}^{-2}\right] \\
& \mathrm{n}_{2}=\mathrm{n}_{1}\left[\frac{\mathrm{M}_{1}}{\mathrm{M}_{2}}\right]^{-1}\left[\frac{\mathrm{~L}_{1}}{\mathrm{~L}_{2}}\right]^{3}\left[\frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}\right]^{-2}
\end{aligned}
$$

Here, $\quad n_{1}=6.67 \times 10^{-11}$
$\mathrm{M}_{1}=1 \mathrm{~kg}$
$M_{2}=1 \mathrm{~g}=10^{-3} \mathrm{~kg}$
$\mathrm{L}_{1}=1 \mathrm{~m}, \quad \mathrm{~L}_{2}=1 \mathrm{~cm}=10^{-2} \mathrm{~m}$,
$\mathrm{T}_{1}=\mathrm{T}_{2}=1 \mathrm{~s}$
Substituting in the above equation, we get
$\mathrm{n}_{2}=6.67 \times 10^{-11}\left[\frac{1 \mathrm{~kg}}{10^{-3} \mathrm{~kg}}\right]^{-1}\left[\frac{1 \mathrm{~m}}{10^{-2} \mathrm{~m}}\right]^{3}\left[\frac{1 \mathrm{~s}}{1 \mathrm{~s}}\right]^{-2}$
or $\quad n_{2}=6.67 \times 10^{-8}$
Thus, value of G in CGS system of units is 6.67×10^{-8} dyne $\mathrm{cm}^{2} / \mathrm{g}^{2}$.
8.2 To check the dimensional correctness of a given physical equation :

Every physical equation should be dimensionally balanced. This is called the 'Principle of Homogeneity'. The dimensions of each term on both sides of an equation must be the same. On this basis we can judge whether a given equation is correct or not. But a dimensionally correct equation may or may not be physically correct.

EXAMPLE 5

Show that the expression of the time period T of a
simple pendulum of length 1 given by $\mathrm{T}=2 \pi \sqrt{\frac{l}{\mathrm{~g}}}$ is
dimensionally correct.

Sol. $\quad \mathrm{T}=2 \pi \sqrt{\frac{l}{\mathrm{~g}}}$

Dimensionally $[\mathrm{T}]=\sqrt{\frac{[\mathrm{L}]}{\left[\mathrm{LT}^{-2}\right]}}=[\mathrm{T}]$

As in the above equation, the dimensions of both sides are same. The given formula is dimensionally correct.

8.3 Principle of Homogeneity of Dimensions.

This principle states that the dimensions of all the terms in a physical expression should be same. For example, in the physical expression $\mathrm{s}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2}$, the dimensions of s , ut and $\frac{1}{2} \mathrm{at}^{2}$ all are same.

Note

The physical quantities separated by the symbols ,,$+-=,>,<$ etc., have the same dimensions.

EXAMPLE 6

The velocity v of a particle depends upon the time t
according to the equation $v=a+b t+\frac{c}{d+t}$. Write
the dimensions of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d .
Sol. From principle of homogeneity
or

$$
\begin{aligned}
& {[\mathrm{a}]=[\mathrm{v}]} \\
& {[\mathrm{a}]=\left[\mathrm{LT}^{-1}\right]} \\
& {[\mathrm{bt}]=[\mathrm{v}]}
\end{aligned}
$$

Ans.
or

$$
[\mathrm{b}]=\frac{[\mathrm{v}]}{[\mathrm{t}]}=\frac{\left[\mathrm{LT}^{-1}\right]}{[\mathrm{T}]}
$$

or
$[\mathrm{b}]=\left[\mathrm{LT}^{-2}\right]$
Similarly,
$[\mathrm{d}]=[\mathrm{t}]=[\mathrm{T}]$
Further,

$$
\frac{[\mathrm{c}]}{[\mathrm{d}+\mathrm{t}]}=[\mathrm{v}]
$$

or
$[\mathrm{c}]=[\mathrm{v}][\mathrm{d}+\mathrm{t}]$
or
$[\mathrm{c}]=\left[\mathrm{LT}^{-1}\right][\mathrm{T}]$
or
$[\mathrm{c}]=[\mathrm{L}]$
Ans.

8.4 To establish the relation among various physical quantities:

If we know the factors on which a given physical quantity may depend, we can find a formula relating the quantity with those factors. Let us take an example.

EXAMPLE 7

The frequency (f) of a stretched string depends upon the tension F (dimensions of force), length 1 of the string and the mass per unit length μ of string. Derive the formula for frequency.
Sol. Suppose, that the frequency f depends on the tension raised to the power a , length raised to the power b and mass per unit length raised to the power c. Then.
or

$$
\begin{aligned}
& f \propto[\mathrm{~F}]^{a}[l]^{b}[\mu]^{c} \\
& f=k[\mathrm{~F}]^{a}[l]^{b}[\mu]^{c}
\end{aligned}
$$

Here, k is a dimensionless constant. Thus,

$$
\begin{array}{ll}
& {[f]=[\mathrm{F}]^{0}[l]^{\mathrm{b}}[\mu]^{\mathrm{c}}} \\
\text { or } & {\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]=\left[\mathrm{MLT}^{-2}\right]^{\mathrm{a}}[\mathrm{~L}]^{\mathrm{b}}\left[\mathrm{ML}^{-1}\right]^{\mathrm{c}}} \\
\text { or } & {\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]=\left[\mathrm{M}^{\mathrm{a}+\mathrm{c}} \mathrm{~L}^{\mathrm{a}+\mathrm{b}-\mathrm{c}} \mathrm{~T}^{-2 \mathrm{a}}\right]}
\end{array}
$$

For dimensional balance, the dimension on both sides should be same.

$$
\begin{array}{ll}
\text { Thus, } & a+c=0 \\
& a+b-c=0 \\
\text { and } & -2 a=-1
\end{array}
$$

Solving these three equations, we get

$$
\mathrm{a}=\frac{1}{2}, \mathrm{c}=-\frac{1}{2} \text { and } \mathrm{b}=-1
$$

Substituting these values in Eq. (i), we get

$$
f=\mathrm{k}(\mathrm{~F})^{1 / 2}(l)^{-1}(\mu)^{-1 / 2} \quad \text { or } \quad f=\frac{\mathrm{k}}{l} \sqrt{\frac{\mathrm{~F}}{\mu}}
$$

Experimentally, the value of k is found to be $\frac{1}{2}$

Hence, $\quad f=\frac{1}{2 l} \sqrt{\frac{F}{\mu}}$

8.5 Limitations of Dimensional Analysis

The method of dimensions has the following limitations:
(i) By this method the value of dimensionless constant can not be calculated.
(ii) By this method the equation containing trigonometrical, exponential and logarithmic terms cannot be analysed.
(iii) If a physical quantity depends on more than three factors, then relation among them cannot be established because we can have only three equations by equalising the powers of M, L and T .

Note

The student can now attempt section C
from exercise.

SECTION D - BASIC MATHEMATICS

9. MENSURATION FORMULAS :
r: radius;
V = Volume
d = diameter ;
S.A = surface area
(a) Circle

Perameter : $2 \pi \mathrm{r}=\pi \mathrm{d}, \quad$ Area $\quad: \pi \mathrm{r}^{2}=\frac{1}{4} \pi \mathrm{~d}^{2}$
(b) Sphere

Surface area $=4 \pi \mathrm{r}^{2}=\pi \mathrm{d}^{2}$,
Volume $=\frac{4}{3} \pi \mathrm{r}^{3}=\frac{1}{6} \pi \mathrm{~d}^{3}$
(c) Spherical Shell (Hollow sphere)

Surface area $=4 \pi \mathrm{r}^{2}=\pi \mathrm{d}^{2}$
Volume of material used $=\left(4 \pi r^{2}\right)(d r)$,
$\mathrm{dr}=$ thickness
(d) Cylinder

Lateral area $=2 \pi \mathrm{rh}$

$$
\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}
$$

Total area $=2 \pi r \mathrm{rh}+2 \pi \mathrm{r}^{2}=2 \pi \mathrm{r}(\mathrm{h}+\mathrm{r})$
(e) Cone

Lateral area $=\pi r \sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}} \quad \mathrm{~h}=$ height
Total area $=\pi r\left(\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}+\mathrm{r}\right) \quad \mathrm{V}=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}$
(f) Ellipse

Circumference $\approx 2 \pi \sqrt{\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{2}}$

area $=\pi \mathrm{ab}$
$\mathrm{a}=$ semi major axis
$\mathrm{b}=$ semi minor axis
(g) Parallelogram
$\mathrm{A}=\mathrm{bh}=\mathrm{ab} \sin \theta$
$a=$ side $; h=$ height $; b=$ base

$\theta=$ angle between sides a and b
(h) Trapezoid
area $=\frac{h}{2}(a+b)$

a and b parallel sides $h=$ height
(i) Triangle
area $=\frac{\mathrm{bh}}{2}=\frac{\mathrm{ab}}{2} \sin \gamma=\sqrt{\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}$
$\mathrm{a}, \mathrm{b}, \mathrm{c}$ sides are opposite to angles α, β, γ
b = base ; $\mathrm{h}=$ height

$$
\mathrm{s}=\frac{1}{2}(\mathrm{a}+\mathrm{b}+\mathrm{c})
$$

(j)

Rectangular container

lateral area $=2(\ell b+b h+h \ell)$

Mathematics is the language of physics. It becomes easier to describe, understand and apply the physical principles, if one has a good knowledge of mathematics.

10. LOGARITHMS:

(i) $\mathrm{e} \approx 2.7183$
(ii) If $e^{x}=y$, then $x=\log _{e} y=\ln y$
(iii) If $10^{x}=y$, then $x=\log _{10} y$
(iv) $\quad \log _{10} y=0.4343 \log _{e} y=2.303 \log _{10} y$
(v) $\quad \log (a b)=\log (a)+\log (b)$
(vi) $\quad \log \left(\frac{a}{b}\right)=\log (a)-\log (b)$
(vii) $\quad \log \mathrm{a}^{\mathrm{n}}=\mathrm{n} \log (\mathrm{a})$
11. TRIGONOMETRIC PROPERTIES:
(i) Measurement of angle \& relationship between degrees $\&$ radian
In navigation and astronomy, angles are measured in degrees, but in calculus it is best to use units called radians because of they simplify later calculations. Let ACB be a central angle in circle of radius r, as in figure.
Then the angle ACB or θ is defined in radius as -

$$
\theta=\frac{\text { Arc length }}{\text { Radius }} \Rightarrow \theta=\frac{\overparen{\mathrm{AB}}}{\mathrm{r}}
$$

If $r=1$ then $\theta=A B$
The radian measure for a circle of unit radius of angle ABC is defined to be the length of the circular $\operatorname{arc} \mathrm{AB}$. since the circumference of the cirlce is 2 p and one complete revolution of a cicle is 360°, the relation between radians and degrees is given by the following equation.

$$
\pi \text { radians }=180^{\circ}
$$

ANGLE CONVERSION FORMULAS

$$
1 \text { degree }=\frac{\pi}{180^{\circ}} \quad(\approx 0.02) \text { radian }
$$

Degrees to radians : multiply by $\frac{\pi}{180^{\circ}}$
1 radian ≈ 57 degrees
Radians to degrees : multiply by $\frac{180^{\circ}}{\pi}$

EXAMPLE 15

Covert 45° to radians :
$45 \cdot \frac{\pi}{180}=\frac{\pi}{4} \mathrm{rad}$

Convert $\frac{\pi}{6}$ rad to degrees :
$\frac{\pi}{6} \cdot \frac{180}{\pi}=30^{\circ}$

EXAMPLE 16

Convert 30° to radians :
Sol. $\quad 30^{\circ} \times \frac{\pi}{180^{\circ}}=\frac{\pi}{6} \mathrm{rad}$

EXAMPLE 17

Convert $\frac{\pi}{3}$ rad to degrees.
Sol. $\quad \frac{\pi}{3} \times \frac{180}{\pi}=60$

Standard values

(1) $30^{\circ}=\frac{\pi}{6} \mathrm{rad}$
(2) $45^{\circ}=\frac{\pi}{4} \mathrm{rad}$
(3) $60^{\circ}=\frac{\pi}{3} \mathrm{rad}$
(4) $90^{\circ}=\frac{\pi}{2} \mathrm{rad}$
(5) $120^{\circ}=\frac{2 \pi}{3} \mathrm{rad}$
(6) $135^{\circ}=\frac{3 \pi}{4} \mathrm{rad}$
(7) $150^{\circ}=\frac{5 \pi}{6} \mathrm{rad}$
(8) $180^{\circ}=\pi \mathrm{rad}$
(9) $360^{\circ}=2 \pi \mathrm{rad}$
(Check these values yourself to see that the satisfy the conversion formulaes)
(ii) Measurement of positive \& Negative Angles:

An angle in the xy-plane is said to be in standard position if its vertex lies at the origin and its initial ray lies along the positive x -axis (Fig). Angles measured counterclockwise from the positive x -axis are assigned positive measures; angles measured clockwise are assigned negative measures.

$\stackrel{\sim}{-\frac{3 \pi}{4}} \stackrel{y}{\overbrace{-}} x$

(iii) Six Basic Trigonometric Functions :

The trigonometric fucntion of a general angle θ are defined in tems of x, y and r .

Sine : $\quad \sin \theta=\frac{\text { opp }}{\text { hyp }}=\frac{y}{r}$

Cosecant : $\quad \operatorname{cosec} \theta=\frac{\text { hyp }}{\text { opp }}=\frac{r}{y}$

Cosine: $\quad \cos \theta=\frac{\text { adj }}{\text { hyp }}=\frac{x}{r}$

Secant : $\quad \sec \theta=\frac{\text { hyp }}{\operatorname{adj}}=\frac{r}{x}$

Tangent:

$$
\tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}}=\frac{\mathrm{y}}{\mathrm{x}}
$$

Cotangent:

$$
\cot \theta=\frac{\text { adj }}{\text { opp }}=\frac{x}{y}
$$

VALUES OF TRIGONOMETRIC FUNCTIONS

If the circle in (Fig. above) has radius $\mathrm{r}=1$, the equations defining $\sin \theta$ and $\cos \theta$ become

$$
\cos \theta=\mathrm{x}, \quad \sin \theta=\mathrm{y}
$$

We can then calculate the values of the cosine and sine directly from the coordinates of P .

EXAMPLE 18

Find the six trigonometric ratios from given fig. (see above)

Sol. $\sin \theta=\frac{\text { opp }}{\text { hyp }}=\frac{4}{5} \quad \cos \theta=\frac{\text { adj }}{\text { hyp }}=\frac{3}{5}$
$\tan \theta=\frac{\text { opp }}{\text { adj }}=\frac{4}{3} \quad \cot \theta=\frac{\text { adj }}{\text { opp }}=\frac{3}{4}$
$\sec \theta=\frac{\text { hyp }}{\text { opp }}=\frac{5}{3} \quad \operatorname{cosec} \theta=\frac{\text { hyp }}{\text { opp }}=\frac{5}{4}$

EXAMPLE 19

Find the sine and cosine of angle θ shown in the unit circle if coordinate of point p are as shown.

Sol.

$\cos \theta=\mathrm{x}$-coordinate of $\mathrm{P}=-\frac{1}{2}$
$\sin \theta=y$-coordinate of $P=\frac{\sqrt{3}}{2}$
12. Values of $\boldsymbol{\operatorname { s i n }} \theta, \boldsymbol{\operatorname { c o s }} \theta$ and $\boldsymbol{\operatorname { t a n }} \theta$ for some standard angles.

Degree	0	30	37	45	53	60	90	120	135	180
Radians	0	$\pi / 6$	$37 \pi / 180$	$\pi / 4$	$53 \pi / 180$	$\pi / 3$	$\pi / 2$	$2 \pi / 3$	$3 \pi / 4$	π
$\sin \theta$	0	$1 / 2$	$3 / 5$	$1 / \sqrt{2}$	$4 / 5$	$\sqrt{3} / 2$	1	$\sqrt{3} / 2$	$1 / \sqrt{2}$	0
$\cos \theta$	1	$\sqrt{3} / 2$	$4 / 5$	$1 / \sqrt{2}$	$3 / 5$	$1 / 2$	0	$-1 / 2$	$-1 / \sqrt{2}$	-1
$\tan \theta$	0	$1 / \sqrt{3}$	$3 / 4$	1	$4 / 3$	$\sqrt{3}$	∞	$-\sqrt{3}$	-1	0

A useful rule for remembering when the basic trigonometric funcions are positive and negative is the CAST rule. If you are not very enthusiastic about CAST. You can remember it as ASTC (After school to college)

$11^{\text {nd }}$ Quadrant	$I^{\text {nd }}$ Quadrant
S \sin positive	A all positive
T Tan positive	C cos positive
IIIId ${ }^{\text {nd }}$ Quadrant	IV ${ }^{\text {dd }}$ Quadrant

(b) If angle $=\left[(2 n+1) \frac{\pi}{2}+\theta\right]$ where n is in interger. Then trigonometric function of $\left[(2 \mathrm{n}+1) \frac{\pi}{2} \pm \theta\right]=\quad$ complimentry trignometric function of θ and sign will be decided by CAST Rule.

EXAMPLE 20

Evaluate $\sin 120^{\circ}$
Sol. $\quad \sin 120^{\circ}=\sin \left(90^{\circ}+30^{\circ}\right)=\cos 30^{\circ}=\frac{\sqrt{3}}{2}$

Aliter $\sin 120^{\circ}=\sin \left(180^{\circ}-60^{\circ}\right)=\sin 60^{\circ}=\frac{\sqrt{3}}{2}$

EXAMPLE 21

Evaluate $\cos 210^{\circ}$
Sol. $\quad \cos 210^{\circ}=\cos \left(180^{\circ}+30^{\circ}\right)=-\cos 30^{\circ}=-\frac{\sqrt{3}}{2}$

Step $1 \rightarrow$ Identify the quadrant in which angle lies.
Step $2 \rightarrow$
(a) If angle $=(\mathrm{n} \pi \pm \theta)$
where n is an integer. Then

FINDING
RULES FOR FINDING
TRIGONOMETRIC RATIO OF ANGLES
GREATER THAN 90°.
\boxtimes : info@motion.ac.in, url : www.motion.ac.in, © : 1800-212-1799, 8003899588

EXAMPLE 22

$\tan 210^{\circ}=\tan \left(180^{\circ}+30^{\circ}\right)=\tan 30^{\circ}=+\frac{1}{\sqrt{3}}$
13. IMPORTANT FORMULAS
(i) $\sin ^{2} \theta+\cos ^{2} \theta=1$
(ii) $1+\tan ^{2} \theta=\sec ^{2} \theta$
(iii) $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$
(iv) $\sin 2 \theta=2 \sin \theta \cos \theta$
(v) $\cos 2 \theta=2 \cos ^{2} \theta-1=1-2 \sin ^{2} \theta$
$=\cos ^{2} \theta-\sin ^{2} \theta$
(vi) $\quad \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$
(vii) $\quad \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$
(viii) $\quad \sin \mathrm{C}+\sin \mathrm{D}=2 \sin \left(\frac{\mathrm{C}+\mathrm{D}}{2}\right) \cos \left(\frac{\mathrm{C}-\mathrm{D}}{2}\right)$
(ix) $\quad \sin \mathrm{C}-\sin \mathrm{D}=2 \sin \left(\frac{\mathrm{C}-\mathrm{D}}{2}\right) \cos \left(\frac{\mathrm{C}+\mathrm{D}}{2}\right)$
(x) $\quad \cos \mathrm{C}+\cos \mathrm{D}=2 \cos \frac{\mathrm{C}+\mathrm{D}}{2} \cos \frac{\mathrm{C}-\mathrm{D}}{2}$
(xi) $\cos \mathrm{C}-\cos \mathrm{D}=2 \sin \frac{\mathrm{D}-\mathrm{C}}{2} \sin \frac{\mathrm{C}+\mathrm{D}}{2}$
(xii) $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
(xiii) $\quad \tan (\mathrm{A} \pm \mathrm{B})=\frac{\tan \mathrm{A} \pm \tan \mathrm{B}}{1 \mp \tan \mathrm{~A} \tan \mathrm{~B}}$
(xiv) $\sin \left(90^{\circ}+\theta\right)=\cos \theta$
(xv) $\cos \left(90^{\circ}+\theta\right)=-\sin \theta$
(xvi) $\tan \left(90^{\circ}+\theta\right)=-\cot \theta$
(xvii) $\sin \left(90^{\circ}-\theta\right)=\cos \theta$
(xviii) $\cos \left(90^{\circ}-\theta\right)=\sin \theta$
(xix) $\cos \left(180^{\circ}-\theta\right)=-\cos \theta$
(xx) $\quad \sin \left(180^{\circ}-\theta\right)=\sin \theta$
(xxi) $\cos \left(180^{\circ}+\theta\right)=-\cos \theta$
(xxii) $\tan \left(180^{\circ}+\theta\right)=\tan \theta$
(xxiii) $\sin (-\theta)=-\sin \theta$
(xxiv) $\cos (-\theta)=\cos \theta$
(xxv) $\tan (-\theta)=-\tan \theta$

- Sine Rule $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
- Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$

EXAMPLE 23

Find x :

Sol. $\frac{\sin 90^{\circ}}{\mathrm{x}}=\frac{\sin 53^{\circ}}{4}$
$x=5$
14. SMALL ANGLE APPROXIMATION

It is a useful simplification which is only approximately true for finite angles. It involves linerarization of the trigonometric functions so that, when the angle θ is measured in radians.
$\sin \theta \square \theta$
$\cos \theta \sqcup 1$ or $\cos \theta \sqcup 1-\frac{\theta^{2}}{2}$ for the second -
order approximation
$\tan \theta \sqcup \theta$

Geometric justification

Small angle approximation. The value of the small angle
X in radians is approximately equal to its tangent

[^0]: \boxtimes : info@motion.ac.in, url : www.motion.ac.in, © : 1800-212-1799, 8003899588

