

Medical Class Companion Chemistry

For NEET/AIIMS

Module-1

Chapter 1 Nomenclature

Chapter 2 Atomic Structure

Chapter 3 Periodic Table

Copyright ${\tt C}$ reserved with Motion Edu. Pvt. Ltd. and Publications

All rights reserved. No part of this work herein should be reproduced or used either graphically, electronically, mechanically or by recording, photocopying, taping, web distributing or by storing in any form and retrieving without the prior written permission of the publisher. Anybody violating this is liable to be legally prosecuted.

ΜοτίοΝ EducatioN Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota-5 (Raj.) **(**) : 1800-212-1799, 8003899588 | url : www.motion.ac.in | 🖂 : info@motion.ac.in

Contents

Chapter 1

Classification and Nomenclature

SECTION A : Classification of carbon and hydrogen atoms , Types of alcohols and Amines, Defination of chiral carbon, Olephenic and acetylenic bonds, Vinylic carbon allylic carbon and benzylic carbon

Kekule's Principle	5		
Degree of Carbon	5		
Degree of Hydrogen	5		
Degree of Alcohol	5		
Degree of Amine	5		
Chiral Carbon or Asymmetric	6		
Carbon Atom			
Olephenic and Acetylenic Bonds	6		
Vinylic Carbon Allylic Carbon and	6		
Benzylic Carbon			
SECTION B : On the basic of structure, On			
the basic of homology			
Based on structure	7		
Based on homology	8		
SECTION C : On the basic of group - Radicals			
of alkanes, Radicals of all	kenes and		
alkynes, Radicals of aromatic hydrocarbon			
On the basis of group	9		
Acyclic Hydrocarbon Groups	9		
Alkenyl Group	10		
Alkynyl group	10		
Alicyclic Hydrocarbon Groups	11		

Aromatic Benzeoid Hydrocarbon Groups 11

SECTION D - Comman name system, Derived Name system

Nomenclature	12
Common or Trivial SYSTEM	12
Derived system	16

SECTION E - Hydro carbons - (Single bonded), unsaturated hydrocarbon, Functional group having compound -Only are F.G. containing compounds, More than are F.G. containing compounds, Bicyclo and spiro

Root Word	19
Suffix	19
Prefix	20
IUPAC Nomenclature of Branched-	21
chain Alkanes	
Nomenclature of Cycloalkanes	23
Nomenclature of Substituted Alkanes	23
(Having Two Functional Groups) Or	
Nomenclature of Alkanes Having	
Secondary Prefix	
Nomenclature of Ethers	24
Nomenclature of Alkenes	24
Nomenclature of Alkynes	25
Nomenclature Of Hydro-Carbons	26
having Double as well as Triple Bonds	
Nomenclature of Polyfunctional	30
Compounds	
IUPAC Nomenclature	37
Bicyclic Compounds	41
Exercise	44
Answer Key	66

Chapter 2

Atomic Structure

SECTION A - Introduction

Discovery of Fundamental Particles	67
Other Fundamental Particles	70
Some important Definations	70
Mole Concept	73
Discovery & Their Discoverers	73
SECTION B - Atomic Models	
Thomson's model of atom [1904]	74
Rutherford's a-Scattering Experiment	74
SECTION C - Electromagnetic	
(EM waves) or Radiant Energy magnetic radiation	Electro-
Wavelength λ (Lambda)	76
Frequency (v) (nu)	76
Time period (T)	76
Velocity (c)	76
Wave number (\overline{v}) (nu bar)	76
Amplitude (a)	76
SECTION D - Planck's quantum Th	neory
Diffraction	77
Interference	77
Black Body Radiations	77
Photoelectric Effect	78
Dual Behaviour of Electromagnetic	79
Radiation	
SECTION E - Bohr's Atomic Model	l
Some Important formulae	80
The important postulates on which	80
Bohr's Model is based are the following	
Application of Bohr's Model	81
Some extra points	82
Hydrogen line spectrum or Hydrogen	82
spectrum	
Similar words	83
Rydberg formula	83
Limitation of the Bohr's model	84
Sommerfeld Extension of the Bohr's	85
Model	
de Broglie concept(Dual nature of matter)	85
Important points concerned with	85
de-Broglie concept	
Heisenberg uncertainity principle	86

SECTION F - Quantum Number

Principal quantum number	87		
Represented by "n"			
Azimuthal quantum number/Angular	87		
quantum number/Secondary quan-tum			
number/Subsidiary quantum number			
Represented by "\left"			
Magnetic quantum number /	88		
Orientation quantum number (m)			
SECTION G - Shape of s-orbitals			
Shape of p-orbitals	89		
Rules for filling of orbitals	89		
Electronic Configuration	90		
Solved Example	91		
Exercise	96		
Answer Key	113		

Chapter 3 Periodic Properties

SECTION A - Periodic Properties		
Introduction	117	
Development of periodic table	117	
SECTION B - Atomic Radius		
Atomic Radius	122	
Ionisation Potential Or Ionisation	125	
Energy Or Ionisation Enthalpy (IP/IE)		
SECTION C - Electron Gain Enthalpy		
Electron Gain Enthalpy	126	
Electronegativity	128	
Nature of oxides	129	
Exercise	131	
Answer Key	152	

CHAPTER

Nomenclature

SECTION A

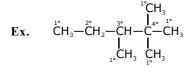
Classification of carbon and hydrogen atoms, Types of alcohols and Amines, Defination of chiral carbon, Olephenic and acetylenic bonds, Vinylic carbon allylic carbon and benzylic carbon

1. Kekule's Principle

(a) Carbon has four valencies.

(**b**) Carbon has a property of catenation. It can make a large chain with addition of other carbons.

(c) A carbon atom can share 2, 4 or 6 electrons with other carbons & can form single, double or triple bond.

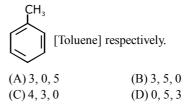

(d) For a carbon atom, it is not possible to make more than 3 bonds with adjacent carbon atom because a carbon atom complete its octet from overlapping which consists directional property.

2. Degree of Carbon

No. of carbon attached to carbon atom is called degree of carbon

there are four types : -

- **1.** Primary carbon (1° carbon)
- **2.** Secondary carbon $(2^{\circ} \text{ carbon})$
- **3.** Tertiary carbon (3° carbon)
- **4.** Quaternary carbon (4° carbon)



Degree of Hydrogen

Degree of carbon on which that hydrogen attached. there are three types

- **1.** Primary hydrogen (1° hydrogen)
- 2. Secondary hydrogen (2° hydrogen)
- **3.** tertiary hydrogen (3° hydrogen)

Ex. How many 1°, 2° & 3°H atoms are present in

Ans.

В

3.

4. Degree of Alcohol

Degree of carbon on which alcohol atom attached. There are three types.

1. Primary alcohol (1° alcohol) 2. Secondary alcohol (2° alcohol) 3. tertiary alcohol (3° alcohol) Ex. CH_3 — CH_2 —OH (1° alcohol) CH_3 —CH—OH (2° alcohol) L_{H_3} CH_3 CH_3

5. Degree of Amine

Ex.

They are named according to the number of carbons attached to nitrogen. there are three types.

1. Primary Amine(1° Amine)2. Secondary Amine(2° Amine)

3. tertiary Amine (3° Amine)

- $-NH_2$ 1° Amine -NH-2°-Amine
 - _N_ __ . .

⊠ : info@motion.ac.in, url : www.motion.ac.in, © : 1800-212-1799, 8003899588

6. Chiral Carbon or Asymmetric Carbon Atom

Chiral carbon or asymmetric carbon atom is a carbon atom that is attached to four different types of atoms for groups of atoms

Ex. Br
$$-C-I$$

7. Olephenic and Acetylenic Bonds A. Olephenic bond :

Alkenes are also called olefins because they form oily liquids on reaction with chlorine gas. An alkene consists of atleast one double bond. This double bond is known as the olefinic bond.

Ex. CH₃CH=CH, Propene

B. Acetylenic bonds :

Acetylene, also called ethyne, the simplest and bestknown member of the hydrocarbon series containing one or more pairs of carbon atoms linked by triple bonds, called acetylenic bond.

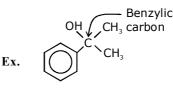
Ex. CH≡CH Ethyne

8. Vinylic Carbon Allylic Carbon and Benzylic Carbon

A. Vinylic Carbon :

Vinylic carbon is a carbon that is involved in a double bond with another carbon. It is sp² hybridized. Vinylic carbon makes a double bond with another carbon which is also sp² hybridized. Both carbons involved in this bond are vinylic carbons.

B. ALLYLIC CARBON :


Allylic carbon can be described as the carbon atom that is adjacent to the double bond. This carbon atom is the nearest to the double bond, but it is not a part of the double bond.

The carbon atoms in the double bond are sp^2 hybridized. But the allylic carbon is sp^3 hybridized. It is bonded to the sp^2 hybridized carbon atom through a single bond.

Ex.
$$\operatorname{CH}_2 - \operatorname{CH}= \operatorname{CH}_2$$
 Allyl

C. BENZYLIC CARBON :

A benzylic carbon is a saturated carbon that is directly attached to a benzene ring.

EXAMPLE 1

В

How many 1° carbon atom will be present in a simplest hydrocarbon having two 3° & one 2° carbon atom?

Sol.

$$\begin{array}{c} C - C - C - C - C \\ | \\ C \\ C \\ \end{array} \begin{array}{c} C \\ C \\ \end{array}$$

2, 4 - dimethyl pentane is the compound having $2-3^{\circ}$ carbon & $1-2^{\circ}$ carbon atom & 4-1° carbon atoms.

EXAMPLE 2

Sol.

Iso Octane $\begin{array}{c} C \\ I \\ -C \\ \downarrow \end{array}$

Triptane
$$-\overset{\star}{C}$$
 -C (1 - 3° carbon atom)

Isopropylamine
$$C - C - NH_2$$
 (no tert. carbon atom)

Isopentane
$$C - \overset{*}{C} - C - C - C$$
 (1 - tert. carbon atom)

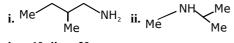
CORPORATE OFFICE : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota

EXAMPLE 3

Indicate the following as 1°, 2°, and 3°.

Ans. $i \rightarrow 2^{\circ}, ii \rightarrow 3^{\circ}$

EXAMPLE 4


Indicate the following as 1° , 2° , and 3° .

i.
$$\overset{Ph}{\underset{Ph}{\longrightarrow}}$$
 NH $\overset{Me}{\longrightarrow}$ ii. Et₃N

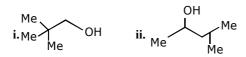
Ans. $i \rightarrow 2^{\circ}, ii \rightarrow 3^{\circ}$

EXAMPLE 5

Indicate the following as 1°, 2°, and 3°.

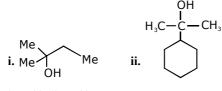
Ans. $i \rightarrow 1^{\circ}, ii \rightarrow 2^{\circ}$

EXAMPLE 6


Indicate the following as 1°, 2°, and 3°.

Ans. $i \rightarrow 2^{\circ}, ii \rightarrow 3^{\circ}$

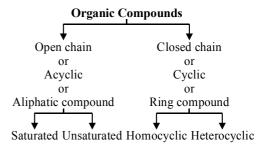
EXAMPLE 7


Indicate the following as 1°, 2°, and 3°.

Ans. $i \rightarrow 1^{\circ}, ii \rightarrow 2^{\circ}$

EXAMPLE 8

Indicate the following as 1°, 2°, and 3°.



Ans. $i \rightarrow 2^{\circ}, ii \rightarrow 3^{\circ}$

SECTION B

On the basic of structure, On the basic of homology

(A) based on structure

2.1 Aliphatic or Open chain compounds

Those compounds in which first & last carbon atoms are not connected with each other. Branched or unbranched chains are possible in these compounds. For example : -

$$C - C - C - C ,$$

$$C - C - C ,$$

$$C - C - C - C - C ,$$

$$C - C - C - C - C ,$$

$$C - C - C - C - C ,$$

$$C - C - C - C ,$$

$$C - C - C - C ,$$

(unbranched) (branched) There are two varieties in these compounds -

2.1.1 Saturated Hydrocarbons :-

(a) In such type, adjacent carbons are attached with single bonds.

Ex.
$$CH_3 - CH_2 - CH_3$$

(b) General formula of these compounds is $C_n H_{2n+2}$

(c) These are also called as paraffins (Parum + Affinis i.e. little reactivity) because these are less reactive due to absence of π -bonds.

2.1.2 Unsaturated Hydrocarbons : -

(a) There will be a double bond or a triple bond between any two carbon atoms,

$$CH_2 = CH - CH_3$$
 (Propene),

$$CH \equiv C - CH_3$$
 (Propyne)

(b) Gen. formula is C_nH_{2n} or C_nH_{2n-2} . (c) Alkenes are also called as olefins because they reacts with halogens to form oily substances olefins (Oleum + fines i.e. Oil forming).

(d) Due to presence of π bonds these are more reactive.

: info@motion.ac.in, url : www.motion.ac.in, (© : 1800-212-1799, 8003899588

2.2 Closed chain compounds : -

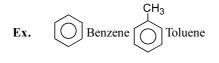
In these compounds first & last carbons are attached with each other.

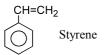
Ex. cyclopropane .

These are of two types -

2.2.1 Homocyclic compounds : -

These are the compounds in which the complete ring is formed by carbon atoms only. These are also of two types -


(a) Alicyclic compounds : -


These are the compounds having the properties like aliphatic compounds. These may be saturated or unsaturated like aliphatic compounds.

Cyclopropane, Cyclopropene, Cyclobutene

(b) Aromatic compounds : -

These compounds consist of at least one benzene ring i.e. a six-membered carbcyclic ring having alternate single and double bonds. These compounds have some fragrant odour and hence, named as aromatic (greek word aroma means sweet smell)

2.2.2 Heterocyclic Compounds : -

These are cyclic compounds having ring or rings built up of more than one kind of atoms.

$$\swarrow$$
 Furan \checkmark Thiophene

(B) Based on homology

If the difference of CH₂ or 14 molecular weight is present between successive members of a series of organic compounds then this is known as homologous series, Members are known as Homologous & overall concept is known Homology. The general characterstics of a homologous series are :

- (i) General formula same
- (ii) General methods of preparation same.
- (iii) Chemical properties same
- (iv) Type of functional group must be same.
- (v) Physical properties different.

e.g. the Homologous series of monohydric alcohols can be represented by the general formula $C_n H_{2n+1}$ OH. The formula of various homologous can be writtne by giving the values 1, 2, 3, to n.

n 1 2 3 4	$\begin{array}{c} C_nH_{2n+1}OH\\ CH_3OH\\ C_2H_5OH\\ C_3H_7OH\\ C_4H_9OH\\ CH_2\\ C_4H_9OH\\ CH_2\\ \end{array}$	The molecular formula of each member differs from the members above and below it by one CH_2 group
-----------------------	---	--

EXAMPLE 9

Which of the following is not an Aliphatic compound -		
(A) iso propane (B) butane		
(C) hexane	(D) None of these	
D		
All are aliphatic con	pound because according to	

All are aliphatic compound, because according to the definition all the hydrocarbons having straight or branched chain of carbon is aliphatic.

EXAMPLE 10

Which of the following is an unsaturated compound	
(A) Ethane	(B) Ethene
(C) Ethyne	(D) both B & C.
D	

Sol.

Sol.

Compounds having carbon-carbon double or triple bond is known as an unsaturated compound.

EXAMPLE 11

Which of the following is the pair of homocyclic & heterocyclic compound -(A) cyclopropane and cyclohexane (B) cycloethane and oxyrane (C) pyridine and thiophene (D) cyclo pentane and furane D

Cyclopentane and furane is a pair of homocyclic & heterocyclic compound. In which cyclopentane is homocyclic and furane is hetrocyclic.

CORPORATE OFFICE : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota

Sol.

EXAMPLE 12

Alicyclic compounds are :

(A) aromatic compounds

- (B) aliphatic cyclic compounds
- (C) heterocyclic compounds
- (D) None of the above

Ans. B

EXAMPLE 13

Which one of the following is the heterocyclic
compound?(A) Pyrene(B) Thiophene(C) Phenol(D) Aniline

Ans. A

EXAMPLE 14

A group closely related compounds which can be expressed by a general formula and in which two consecutive members differ by 14 in their molecular masses is called :

- (A) a homologous series
- (B) a homogeneous series
- (C) a heterogeneous series
- (D) an electrochemical series

Ans. A

EXAMPLE 15

Which one is not correct for a homologous series ?

(A) All members have a general formula

(B) All members have same chemical properties

(C) All members have same physical properties

(D) All members have same functional group

Ans. C

EXAMPLE 16

The formula $C_n H_{2n-2}$ shows -

(A) Alkene & Alkyne (B) Alkyne & Alkadiyne

(C) Alkane & Alkadiene(D) Alkyne & Alkadiene

Ans. D

Sol. For Acetylene & Allene HC = CH $CH_2 = C = CH_2$

 $(C_2H_2) \qquad (C_3H_4)$

SECTION C

On the basic of group - Radicals of alkanes, Radicals of alkenes and alkynes, Radicals of aromatic hydrocarbon

(C) On the basis of group (a) Functional Group

(1) it is responsible for chemical behaviour or properties of any organic compound.

(2) It is made up of single atom or group of atoms eg. —O—, —OH, —COOH etc.

(b) Hydrocarbon Groups

If one hydrogen (or more hydrogen atoms in some cases) is taken out from a hydrocarbon, the group left is known as a hydrocarbon group.Hydrocarbons are of three major types, hydrocarbon groups too belong to three main class; these are ;

(1) Acyclic hydrocarbon groups

(2) Alicyclic hydrocarbon groups

(3) Aromatic benzenoid hydrocarbon groups

Acyclic Hydrocarbon Groups

Alicyclic hydrocarbon groups are of three types : (i) Alkyl groups (ii) Alkenyl groups (iii) Alkynyl groups

(i) Alkyl groups :

These are univalent groups or radicals obtained by the removal of one hydrogen atom from a molecule of an alkane. The symbol '**R**' is often used to represent an alkyl group. The general formula of an alkyl group is $C_n H_{2n+1}$.

$$R - H \xrightarrow{-H} R -$$

 $C_nH_{2n+2} \xrightarrow{-H} C_nH_{2n+1} \xrightarrow{-H}$

Alkyl groups are of five types :

(a) Normal Alkyl group :

This is formed by the removal of one primary hydrogen atom from the straight chain alkane. A normal alkyl group is written as *n*-alkyl group is common naming system and in its IUPAC namenclature, the prefix n - is dropped.

Some examples are :

R	Common	IUPAC
	Name	Name
CH ₃ CH ₂ CH ₂	n-Propyl	Propyl
	(<i>n</i> –Pr)	(Pr)
CH ₃ CH ₂ CH ₂ CH ₂	n-Butyl	Butyl
	(<i>n</i> -Bu)	(Bu)
CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -	n-Pentyl	s-Pentyl

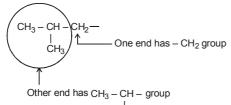
: info@motion.ac.in, url : www.motion.ac.in, © : 1800-212-1799, 8003899588

(b) Secondary alkyl group : This is formed by the removal of one hydrogen from the secondary carbon atom from alkane. It is denoted by sec - alkyl or S - alkyl group in both of the system of nomenclature.

Some examples are given below :

Structure	Common	IUPAC
	name	name
CH ₃ -CH ₂ -CH-CH ₃	Sec-butyl	1-methyl
	(S-Bu)	propyl

(c) Tertiary alkyl group : This group is formed by the removal of one hydrogen from the tertiary carbon of the corresponding alkane. It is denoted by tert or t-alkyl group in both system of nomenclature. Some example are :


$$\begin{array}{ccc} CH_3 & CH_3 \\ I & I \\ CH_3 - C - & I \\ CH_3 & CH_3 - C - CH_2 - CH_3 \\ CH_3 & I \\ \end{array}$$
Tert butyl (t-Bu) tert - pentyl

Tert butyl (t-Bu)

(d) Isoalkyl group : An alkyl group containing one terminal CH₂ - group

and $CH_3 - CH -$ group on the other end with no ĊΗ₃

other branching is said to be an isoalkyl group or ialkyl group.

Hence, it is isoalkyl group, i.e., isobutyl group.

monovalent carbon is not CH₂—

It is not isobutyl group

$$\begin{array}{c} \mathrm{CH}_3 - \mathrm{CH} - \mathrm{CH}_2 - \mathrm{CH}_2 - \mathrm{CH}_2 \\ | \\ \mathrm{CH}_3 \end{array}$$

Isohexyl group

(e) Neoalkyl group : A neoalkyl group contains

 CH_3 one CH_2 – group on one end and one $CH_3 - C_1$ CH₃

group on the other end with no other branching in the chain.

$$\begin{array}{ccc} CH_3 & CH_3 \\ I \\ CH_3 - C - CH_2 - \\ CH_3 & CH_3 - C - CH_2 - CH_2 - \\ CH_3 & CH_3 \end{array}$$
Neopentyl group Neohexyl group
$$\begin{array}{c} CH_3 \\ CH_3 \end{array}$$

Neoheptyl group

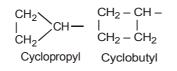
Note : Methylene group : If two hydrogen atoms are removed from methane then the group obtained is methylene group, i.e., - CH₂ -

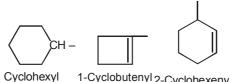
Alkenyl Group

Hydrocarbon group containing carbon-carbon double bond is called alkenyl group. Their common names are accepted in IUPAC system in most of the cases. Some examples are :

$CH_2 = CH -$	Vinyl group
$CH_2 = CH - CH_2 -$	Allyl group
$CH_3 - CH = CH -$	Propenyl group
$CH_3 - CH =$	Ethylidene
$CH_3 - CH_2 - CH =$	Propylidene
CH ₃ -C=	
L CH ₃	1-methyl ethylidene

Alkynyl group

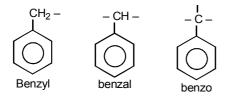

Hydrocarbon group containing carbon-carbon triple bond may be called an alkynyl group. Their common names are accepted in IUPAC system in most of the case. Some examples are :


Structure	Common	IUPAC	
	name	name	
C ≡	M ethyn yl	Methynyl	
$CH \equiv C -$	Ethynyl	Ethynyl	
$CH \equiv C - CH_2 -$	Propargyl	Propargyl	
$CH_3 - C \equiv C -$	Propynyl	Propynyl	

CORPORATE OFFICE : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota

Alicyclic Hydrocarbon Groups

These are obtained when one hydrogen atom is removed from the ring carbon. These groups may be classified as : cycloalkyl groups



1-Cyclobutenyl 2-Cyclohexenyl

Aromatic Benzeoid Hydrocarbon Groups

Aromatic hydrocarbon groups have one or more hydrogen atoms less than the present hydrocarbons. These are in general denoted by Ar- and called aryl groups. The simplest aryl group is phenyl group (C_6H_5) . This is denoted by Ph or ϕ .

EXAMPLE 17

Example of a gem dihalide is : -

- (A) Pentamethylene chloride
- (B) Ethylene chloride
- (C) Propylene chloride (D) Benzal chloride

Ans. D

Sol. The example of a gem dihalide is benzal chloride. In such a halide both Cl atoms are attached to the same carbon atom. (Banzal chloride)

EXAMPLE 18

C ₃ H ₆ Br ₂ can shows -
(A) Two gem dibromide
(B) Two vic dibromide
(C) Two tert. dibromo alkane
(D) Two sec. dibromo alkane

Ans. Α Sol. 1, 1 - dibromo propane Br

$$H_3C - C - CH_3$$

Br

2, 2 - dibromo propane

(Two gem dibromides)

EXAMPLE 19

Which of the following has iso group?

(A)
$$CH_{3}-CH_{2}-CH-CH_{3}$$

 I
 CH_{3}
(B) $CH_{3}-CH-CH-CH_{3}$
 CH_{3}
(C) $CH_{3}-CH_{2}-CH-CH_{3}$
(D) $CH_{3}-CH-CH_{3}$

Ans. A

EXAMPLE 20

Which of the following has neo group?

(A)
$$CH_3 = CH_3$$

(A) $CH_3 = C - CH_2 - CH_3$
(A) $CH_3 = CH_3$

(B)
$$CH_3 - CH - CH - CH_3$$

 I
 CH_2 CH_3

$$\begin{array}{c} (C) \ CH_3 - CH - CH_2 - CH_2 - \\ I \\ CH_3 \end{array}$$

$$(D) CH_{3} - C - CH - CH_{3}$$
$$| CH_{3} - C - CH - CH_{3}$$
$$| CH_{3} |$$

Ans. Α

EXAMPLE 21

In C₃ H₈ the total number of structure ?

1 Ans.

⊠ : info@motion.ac.in, url : www.motion.ac.in, © : 1800-212-1799, 8003899588

SECTION D

Comman name system, Derived Name system

Nomenclature

Mainly three systems are adopted for naming an organic compound -

Common Name or Trivial System Derived System IUPAC system or Jeneva System

5. **Common or Trivial System**

eg.

Initially organic compounds are named on the basis of source from which they were obtained.

S. No.	Organic Compound	Trivial Name	Source
1.	СН₃ОН	or Methyl	Obtained by destructive distillation of wood.
2.	NH ₂ CONH ₂	Urea	Obtained from urine
3.	CH ₄		Itwasproduced in marsh places.
4.	CH3COOH	Vinegar	Obtained from Acetum i.e. Vinegar
5.	соон соон	Oxalic acid	Obtained from oxalis plant.
6.	НСООН	Formic acid	Obtained from formicus [Red ant]
7.	СН ₃ – СН – СООН ОН	Lactic acid	Obtained from milk
8.	CH ₂ - COOH CH(CH)CCOH	Malic acid	Obtained from apple \Rightarrow mallum
9.	CH ₃ CH ₂ CH ₂ COOH	Butyric acid	Obtained from butter.
10.	CH ₃ (CH ₂) ₄ COOH	Caproic acid	Obtained from goats.

Some typical compounds in which common & trivial names are also differ.

s.	Compound	Trivial	Source
No.		Name	
1.	CH ₄	Marsh gas	Methane
2.	СН ₃ ОН	Woodspirit	Methyl alcohol
3.	CH ₃ COOH	Vinegar	Acetic acid
4.	СН ₃ -С-СН ₃ О	Acetone	Dimethyl ketone
5.	О СН ₂ =СН–С–Н	Acrolein	Acryl Aldehyde
6.	H ₃ C O CH ₃ -C-C-H CH ₃	Pevaldehyde	Neo valer Aldehyde

Common – Names (R is termed as alkyl-)

S. No.	Compound	Source
1.	R–X	Alkylhalide
2.	R–OH	Alkyl alcohol
3.	R–SH	Alkyl thio alcohol
4.	R–NH ₂	Alkylamine
5.	R–O–R	Dialkyl ether
6.	R–S–R	Dialkyl thioether
7.	R-C-R U O	Dialkyl ketone
8.	R–NH–R	Dialkyl amine
9.	IR-IV-IK I R	Trialkyl amine
10.	R–O–R'	Alkyl alkyl' ether
11.	R-C-R' U	Alkyl alkyl' ketone
12.	R–S–R'	Alkyl alkyl' thio ether
13.	R–NH–R'	Alkyl alkyl' amine
14.	R-N-R' I R*	Alkyl alkyl' alkyl'' amine

5.1 Position of double bond : -

In an unsaturated hydrocarbon if the position of double bond is on Ist or last carbon then it's prefix will be α (alpha) if it is on 2nd carbon it is termed as β (Beta) & the γ (gamma) & δ (delta) and so on.

eg.	$H_2C = CH - CH_2 - CH_3$	α - butylene
	$H_3C - CH = CH - CH_3$	β - butylene
	$H_3C - CH_2 - CH = CH_2$	α - butylene
	$H_2C = CH - CH_3$	(Both are same
	or	positions,
	$H_3C - CH = CH_2$	propylene)

CORPORATE OFFICE : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota

 $CH_3-CH_2-CH=CH-CH_2-CH_3 \gamma$ - hexylene CH₃- CH₂-CH₂-CH δ - octylene =CH-CH,-CH,-CH,

5.2 Common - Naming of dihalides : -

- (a) When two same halogen atoms are attached to the same carbon such compounds are called Gemdihalides.
- (b) Common names of such compounds are alkylidene halides
- CH₃-CH(CI eg. :

$$CH_3-CH-CH < CI \\ I \\ CH_3$$
 Isobutylidene Iodide

Exception : CH₂ CI

Methylidene halide(wrong) Methylene halide (right)

Ethylidene chloride

When two same halogen atoms are attached to (c) adjacent carbon, these are called as vicinal dihalides. Common names of such compounds are alkylene halide.

eg :
$$\begin{array}{c} CH_3 - CH - CH_2 \\ I & I \\ H_3C - C - CH_2 - CI \\ CH_2 \end{array}$$
Propylene Iodide

(d) When two same halogen atoms are attached at the two ends of a carbon chain its common naming will be polymethylene halide.

'poly' word indicates the number of -CH₂- groups.

-CH ₂ -	2	3	4	5	6
Poly	di	tri	tetra	penta	Hexa

eg.
$$CH_2 - CH_2$$

Trimethylene Iodide

$$\begin{array}{c} \mathsf{CH}_2-\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{CH}_2\\ |\\ \mathsf{Br} & \mathsf{Br} \end{array}$$

Pentamethylene Bromide

 CH_2

Exception :

eg.

5.3

CH ₂ – X	dimethylene halide	(wrong)
$CH_2 - X$	ethylene halide	(right)
Make the struct	ture of following organic	
compounds -		

- 1. Isopropylidene Bromide
- 2. Active amylene Iodide
- 3. Isobutylene

Sol. 1.
$$CH_3$$
-C-CH₃ 2. CH_3 -C-CH₂ -I
Br CH₂-CH₃ 2. CH_3 -C-CH₂-I

3.
$$H_3C - C = CH_2$$

Common - Naming of the functional group having carbon : -

Chart - 1

Functional group	Suffix	Functional group	Suffix
О Ш —С — Н	-aldehyde	О Ш –С – ОН	-ic Acid
0 -C - X	-yl halide	0 -C - NH ₂	-amide
$-C \equiv N$	-o-nitrile	$-N \equiv C$	-o-isonitrile
0 -C-O-R	-ate	0=4 4=0	-icanhydride

Prefix : -

1. Carbon	\rightarrow	Form-		
2. Carbon	\rightarrow	Acet-		
3. Carbon	\rightarrow	Propion-		
4. Carbon	\rightarrow	$\operatorname{Butyr} \stackrel{\rightarrow}{\to} \operatorname{Normal} \stackrel{-}{\to} \operatorname{Iso} \stackrel{-}{\to}$		
5. Carbon	\rightarrow	Valer		
$3C + (=)$ double bond \rightarrow Acryl-				
4 C + double bond \rightarrow Croton-				
О О H-C-H СН ₃ -С-О-Н				
Formaldehyde	2	Acetic Acid		

⊠ : info@motion.ac.in, url : www.motion.ac.in, © : 1800-212-1799, 8003899588

eg.

$$\begin{array}{c} O & O \\ \parallel \\ CH_3 - CH_2 - C - CI & CH_3 - CH - C - NH_2 \\ \\ CH_3 \end{array}$$

Propionyl chloride Isobutyr amide

Acetaldehyde

5.4 Nomenclature of Ester :-

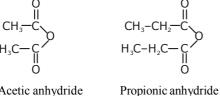
The group which is attached to the oxygen is written as alkyl & the remaining structure is named same as defined in chart-1.

Methyl acetate eg. CH₃ $O - CH_3$

$$CH_3 - CH_2 - C - O - CH_2 - CH_3$$
 Ethyl propionate

$$H_{3} - C - O - CH_{2} - CH_{3}$$
 Ethyl acetate

$$\begin{array}{c} \mathsf{H} \\ \mathsf{H} \\ \mathsf{H} \\ \mathsf{C} \\ \mathsf{O} \\ \mathsf{C} \\ \mathsf{O} \\ \mathsf{C} \\ \mathsf{H}_3 \end{array}$$
 Methyl formate


Methyl form CHa

$$H$$
 Acetic acid $CH_3 - C - O - H$

$$CH_2 = CH - C - O - CH_2 - CH_3$$
 Ethyl acrylate

 $CH_3 - CH = CH - C - O - CH_3$ Methyl crotonate

5.5 Nomenclature of Anhydride : -

Acetic anhydride

H₃C

5.6

$$CH_2 = CH - C$$

$$H_2C = CH - C$$

$$H_2C = CH - C$$

Acrylic anhydride

Acetic propionic anhydride

Nomenclature of Amine : -

The common name of amine is obtained by citing the name of the alkyl groups bonded to the nitrogen atom in alphabetical order followed by amine. The entire name is written in one word. For examples.

$$\begin{array}{ll} CH_3 - NH_2 & Methylamine \\ CH_3 - NH - CH_2 - CH_2 - CH_3 & ethylproplyamine \\ CH_3 - N - CH_3 & Trimethylamine \\ & | \\ CH_3 \end{array}$$

 $-N-CH_2-CH_2-CH_2-CH_2-CH_3$ Dimethylpentylamine CH3

Common or Travel Names

EXAMPLE 22

 ate
 The trivial name of the following compound is

 ate

$$CH_3$$

 ate
 $CH_3 - C - CHO$
 H_3
 H_3

 (A) Pevaldehyde

 (B) Trimethyl acetaldehyde

 (C) trimethyl acetaldehyde

 (D) t - butyl formaldehyde

Ans. Α

EXAMPLE 23

Acrolein is -		
(A) An unsaturated aldehyde		
(B) A saturated aldehyde		
(C) A polymer		
(D) An alkene		
Α		
$CH_2 = CH - CHO$ unsaturated aldehyde.		

CORPORATE OFFICE : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota

EXAMPLE 24

The common name of the compound $CH_2 = CH - CH_2 - NH_2$ is -(A) Vinyl amine (B) Allyl amine (C) Divinyl amine (D) Diallylamine **B** $CH_2 = CH - CH_2$ - is allyl group.

EXAMPLE 25

The common name of the compound $CH_3 - CH_2 - S - CH_2 - CH_3$ is -(A) Diethyl ether (B) Ethyl methyl thioether (C) Diethyl thioether (D) None C

EXAMPLE 26

Ans.

The common name of the compound $CH_2 = CH - C - CH = CH_2$ is - $||_O$ (A) Divinyl ketone (B) Diallyl ketone

(C) Both A and B (D) None

Ans. A

Sol. $CH_2 = CH - is called as vinyl group.$

EXAMPLE 27

Write the common names of the following -1. CH - CH - Br

2.
$$CH_3 - CH - CH_2 - I$$

4.
$$CH_3 - CH - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$$

5.
$$CH_3 - CH_2 - CH - CH_2 - OH$$

 I
 CH_3

6.
$$CH_3 - CH_2 - CH_2 - CH_2 - C - NH_2$$

7. $CH_2 = CH - SH$ 8. $CH_3 - CH_2 - CH_2 - CH - I$ L CH₂ 9. $CH_3 - CH_2 - CH - OH$ | CH_2 | CH_2 CH_3 CH_3 10. $CH_3 - C - CH_2 - SH$ $H_1 - CH_3$ 11. $CH_3 - C = CH_2$ H_2 12. $CH \equiv C - CH_2 - Br$ Sol. 1. Ethyl Bromide 2. Isobutyl Iodide 3. Active amyl fluoride 4. Iso pentyl chloride 5. Active amyl alcohol 6. Tertiary hexyl amine 7. Vinyl thio alcohol 8. Active secondary amyl Iodide 9. Secondary amyl alcohol. 10. Neopentyl thio alcohol 11. Isopropenyl amine 12. Propargyl Bromide **EXAMPLE 28**

Write down the structures of the following -1. Di allyl amine 2. Tri methyl amine 3. Di isobutyl ether 4. Di isopentyl ketone 5. Di Active amyl amine 6. Di normal propyl ether 7. Tri neopentyl amine Sol. 1. $CH_2 = CH - CH_2 - NH - CH_2 - CH = CH_2$ 2. $CH_3 - N - CH_3$ CH_3 3. $H_3C - CH - CH_2 - O - CH_2 - CH - CH_3$ H_3C 4. $H_3C - CH - CH_2 - CH_2 - CH_2 - CH_3$ H_3C 4. $H_3C - CH - CH_2 - CH_2 - CH_2 - CH_3$ H_3C 4. $H_3C - CH - CH_2 - CH_2 - CH_2 - CH_3$ CH_3 3. $H_3C - CH - CH_2 - CH_2 - CH_2 - CH_3$ H_3C 4. $H_3C - CH - CH_2 - CH_2 - CH_2 - CH_3$ H_3C 5. $CH_3 - CH_3$ CH_3 5. $CH_3 - CH_3$ $CH_3 - CH_3$ CH_3

⊠ : info@motion.ac.in, url : www.motion.ac.in, © : 1800-212-1799, 8003899588

Ans.

Sol.

5.
$$CH_3 - CH_2 - CH - CH_2 - NH - CH_2 - CH - CH_2 - CH_3$$

 $CH_3 - CH_2 - CH_2 - CH_2 - CH_3$
6. $CH_3 - CH_2 - CH_2 - O - CH_2 - CH_2 - CH_3$
7. $CH_3 - C - CH_2 - N - CH_2 - C - CH_3$
 $CH_3 - CH_2 - CH_2 - CH_3 - CH_3$
 $CH_3 - CH_2 - CH_2 - CH_3$
 $CH_3 - CH_2 - CH_2 - CH_3$

I CH₃

EXAMPLE 29

Common name of the compound O H $CH_3 - CH = CH - C - OH$ is -(A) Crotonic acid (B) Acrylic acid (C) Allylic acid (D) None A

Ans. A Sol. 4C

Sol. $4C + (=) \rightarrow croton$ Suffix is 'ic' acid.

EXAMPLE 30

Common name of the compound $CH_2 = CH - C - H$ is -(A) Croton aldehyde (B) Acryl aldehyde (C) Propion aldehyde (D) Butyr aldehyde **B** $3C + (=) \rightarrow Acryl$ Suffix is aldehyde.

EXAMPLE 31

Ans.

Sol.

Common name of the compound

$$\begin{matrix} \mathsf{O} \\ \parallel \\ \mathsf{CH}_3 - \mathsf{CH}_2 - \overset{\mathsf{O}}{\mathsf{C}} - \mathsf{NH}_2 \ \mathrm{is} \ \mathrm{.} \end{matrix}$$

(B) Propionamide

(D) Acetic amide

(A) Acetamide

(C) Butyramide

Ans. B

Sol. $3C \rightarrow$ Propion Suffix is amide.

EXAMPLE 32

Write down the common names of the following :

1.
$$CH_3 - CH_2 - CH - C - NH_2$$

 $|| CH_3 - CH_2 - CH_3 - CH_3$

2.
$$CH_3 = C = 0$$

 $H_3 = C = N \equiv C$
 $CH_3 = C = 0$
 $H_3 = C = 0$
 $H_3 = C = 0$
 $H_3 = C = 0$

Sol. 1. Secondary Valer amide

....

2. Tertiary valero-isonitrile

3. Isobutyryl chloride

6. Derived system

According to this system name to any compound is given according to the parrent name of the homologous series. This system is reserved for the following nine homologous series.

Chart - 2				
S. No.	Series Name of Homologous series	Derived Name	Structure of group	
1.	Alkane	Methane		
2.	Alkene	Ethylene	>C=C<	
3.	Alkyne	Acetylene	$-C \equiv C -$	
4.	Alcohol	Carbinol	- ^l C-OH	
5.	Aldehyde	Acetaldehyde	- CHO	
6.	Carboxyllic acid	Acetic acid	-COOH	
7.	Acid halide	Acetyl halide	-COX	
8.	Amide	Acetamide	$-\overset{l}{\overset{c}{}_{c}}-\text{CONH}_2$	
9.	Ketone	Acetone	$\begin{array}{c} & \\ - \begin{array}{c} C - \begin{array}{c} C - \begin{array}{c} C - \end{array} \\ & \\ O \end{array} \end{array}$	

CORPORATE OFFICE : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota

(Symmetrical & Unsymmetrical) (a) Symmetrical : -In the given two alkyl groups one group is attached to the one carbon of ethylene & next on the next carbon. (b) Unsymmetrical : -When both the given groups are attached on the same carbon. Note : - Symmetrical & Unsymmetrical : terms are used only when two alkyl groups are given. eg. Symmetrical dimethyl CH ethylene Unsymmetrical dimethyl CHá ethylene Symmetrical ethyl methyl ethylene CHa Tri methyl ethylene CHá CH₃ ∠CH₃ Tetra methyl ethylene СН⋨ $CH_3 - C \equiv C - CH_3$ Dimethyl acetylene Sol. **EXAMPLE 33**

Write down the derived names of the following-1. $CH_2=CH-CH_2-C=C-H$

2. CH₃ - C - OH | CH₃

10. Tertiary butyl Isopropyl methane.

⊠ : info@motion.ac.in, url : www.motion.ac.in, ⓒ : 1800-212-1799, 8003899588

6.1

Types of Ethylene:-

Class of Compound	Structure	Common name	Class of Compound	Structure	Common name
Alkanes	(i) CH ₄	Methane		CH ₃ CH ₂ CH ₂ OCHCH ₃	Isopropyl
	(ii) CH ₃ – CH ₃	Ethane		U CH3	propyl ether
	(iii) CH ₃ – CH ₂ – CH ₃	Propane	Aldehydes	НСНО	Formaldehyde
	CH ₃			CH ₃ – CHO	Acetaldehyde
	$(iv) CH_3 - CH_3 - CH_3$ CH ₃	Isobutane		$CH_3 - CH_2 - CH_2 - CHO$	Butyraldehyde
	$CH_3 - C - CH_3$ CH_3	Neopentane	Ketones	О CH ₃ –C – CH ₃ О	Acetone
Alkenes	$CH_2 = CH_2$	Ethylene		$\begin{array}{c} & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	Methyl ethyl
	$CH_3 - CH = CH_2$	Propylene		0	ketone
Allowee	CH≡CH	Acetylene		∥ CH₂–CH₂–CH₂–CH₂–CH₂–CH₂	Ethyl propyl
Alkynes	$CH_3 - C \equiv CH$	Methyl			ketone
		acetylene	Carboxylic	НСООН	Formic acid
	$CH_3 - C \equiv C - CH_3$	Dimethyl	acids	CH ₃ – COOH	Acetic acid
		acetylene		$CH_3 - CH_2 - CH_2 - COOH$	Butyric acid
	CH ₃ – X	Methyl halide		СООН	Oxalic acid
	Br			 COOH	
Alkyl halides	$CH_3 - CH - CH_3$	Isopropyl bromide		COOH CH ₂	Malonic
	Br			СООН	acid
	$CH_3 - C - CH_3$	Tert-butyl bromide		CH ₂ – COOH	Succinic acid
	CH ₃ Br			CH ₂ – COOH	doid
	ы CH ₃ – CH – CH ₂ – CH ₃	Sec-butyl bromide		$CH_2 - COOH$ $CH_2 - COOH$	Glutaric acid
	$CH_3 - CHCl_2$	Ethylidene dichloride	Esters	HCOOCH ₃	Methyl formate
	$CH_2CI - CH_2CI$	Ethylene dichloride		CH ₃ COOC ₂ H ₅	Ethyl acetate
Alcohol	CH ₃ – OH	Methyl alcohol		$CH_3 - CH_2 - CH_2 - COOC_2H_5$	Ethyl butyrate
	$CH_3 - CH_2 - OH$	Ethyl alcohol		0 0	A
	$CH_3 - CH_2 - CH_2 - OH$	n - Propyl alcohol	Anhydrides	СН ₃ С-С-СН ₃	Acetic anhydride
	CH ₃ – CH – CH ₂ OH CH ₃	lsobutyl alcohol		ОО СН ₃ СН ₂ С-О-ССН ₂ СН ₃ О	Propionic anhydride
	$HO - CH_2 - CH_2OH$	Glycol	Acid	СН ₃ – С – СІ	Acetyl
	$OHCH_2 - CHOH - CH_2OH$	Glycerol	chlorides	CH ₃ – C – Cl	chloride
Ether	CH ₃ – O – CH ₃	Dimethyl ether	Cyanides	CH ₃ – CN	Methyl cyanide
	$CH_3 - CH_2 - O - CH_3$	Ethyl methyl ether		$CH_3 - CH_2 - CN$	Ethyl cyanide
	$CH_3 - CH_2 - O - CH_2 - CH_3$	Diethyl ether			

CORPORATE OFFICE : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota

_____000

SECTION E

Hydro carbons - (Single bonded), unsaturated hydrocarbon, Functional group having compound - Only are F.G. containing compounds, More than are F.G. containing compounds, Bicyclo and spiro

> Any given organic structure has only one IUPAC name and any given IUPAC name represents only one molecular structure.

> The IUPAC name of any organic compound essentially consists of three parts, i.e.,

- (1) root word (2) Suffix and
- (3) Prefix

Root Word

If is the basic unit of the name. If denotes the number of carbon atoms present in the principal chain of the molecule. Chain containing one to four carbon atoms are known by special root words (based upon the common names of alkanes) while chains from C_5 onwards are known by Greek number roots. Thus :

Chain length	Word root	Chain lengh	Word root	Chain length	Word root
C_1	Meth	C_8	Oct	C14	Tetradec
C_2	Eth	C9	Non	C ₂₀	Eicos
C ₃	Prop	C ₁₀	Dec	C ₃₀	triacont
C5	Pent	C11	Undec	C40	Tetracont
C6	Hex	C12	Dodec	C50	Pentacont
C ₇	Hept	C ₁₃	Tridec	C ₆₀	Hexacont

Suffix

There are two types of suffixes, i.e., Primary suffix and Secondary suffix.

(a) **Primary suffix :** A primary suffix is always added to the root word to indicate whether carbon chain is saturated or unsaturated. The primary suffix for the various saturated and unsaturated carbon chains and groups are given below :

Nature of carbon chain	Primary surfix	Chain lengh
Saturated, C – C	-ane	Alkane
Unsaturated, $C = C$	-ene	Alkene
Unsaturated, $C = C$	-yne	Alkyne

Nature of group	Primary suffix	Generic name	
Alkane - one hydrogen atom	-yl	Alkyl	
Alkene - one hydrogen atom	-enyl	Alkenyl	

-vnl

If the parent, carbon-chain contains two, three, four or more double or triple bonds, numerical prefixes such a di (for two), tri (for three), tetra (for four) etc. are added to the primary suffix. For example :

Alkyne - one hydrogen atom

	Type of carbon chain	Primary suffix	Generic name
(i)	Having two double bonds	diene	Alkadiene
(ii)	Having three double bonds	triene	Alkatriene
(iii)	Having n double bonds	polyene	Alkapolyene
(iv)	Having two triple bonds	diyne	Alkadiyne
(v)	Having three triple bonds	triyne	Alkatriyne

(b) Secondary suffix : Suffix added after the primary suffix to indicate the particular functional group (groups) present in the carbon chain is known as secondary suffix. Secondary suffix of some important functional groups are given below.

Class of organic compoun ds	organic compoun compou		Class of organic compou nds	Function al group	Secondary suffix
Alcohols	– OH	-ol	Acid chlorides	- COCl	-oyl chloride
Aldehydes	– CHO	-al	Esters	– COOR	Alkyl oate
Ketones	– CO –	-one	Nitrilie	- CN	nitrile
Carboxylic acids	– СООН	–oic acid	Amide	– CONH ₂	-amide

It may be noted that while adding the secondary suffix to the primary suffix, the terminal 'e' of the primary suffix (i.e., ane, ene, yne) is dropped if the secondary suffix begins with **a**, **e**, **i**, **o**, **u**, **& y** but is retained if the secondary suffix begins with a **consonant except** *y*.

Structure	root Word	Prim- ary suffix	Seco- ndary suffix	IUPAC name
CH ₃ – CH ₂ – OH	Eth	ane	ol	Ethanol
$CH_3 - CH_2 - CH_2 - CH_2$	But	ane	al	Butanal
0				
$CH_2 = CH - C - CH_3$	But	ene	one	Butenone
$CH_3 - (CH_2)_4 - COOH$	Hex	ane	oic	Hexanoic acid

: info@motion.ac.in, url : www.motion.ac.in, ©: 1800-212-1799, 8003899588

Nomenclature | 19

Alkynyl

Prefix

Prefixes are used to indicate

(i) the cyclic nature of compound and

(ii) the nature of the substituents present on the parent chain. Thus, prefixes are of two types :

(a) **Primary prefix :** The primary prefix cyclo is added before the root word of indicate the cyclic nature of the compound.

Thus

 $\begin{array}{cccc} CH_2-CH_2 \\ | & | & Cyclo \\ CH_2-CH_2 & Primary \\ & prefix \\ & \downarrow \\ & Cyclobutane \end{array} + \begin{array}{c} but \\ + & ane \\ Primary \\ suffix \\ & U \\ Cyclobutane \end{array}$

In open chain compound no prefix (primary) is added.

(b) Secondary prefix : In IUPAC system of nomenclature, certain functional groups are not considered as functional groups but instead are treated as substituents. These are called secondary prefix and are added immediately before the root word (or the primary prefix in case of alicyclic compounds) in **alphabetical** order to denote the side chains or substituent groups. The secondary prefixes for some groups which are always treated as substituent groups are given below

Substituent	Secondary	Substituent	Secondary
group	prefix	group	prefix
-F -Cl -Br -I -NO2 -NO CH ₃ -CH-CH ₃	Fluoro Chloro Bromo Iodo Nitro Nitroso 1-methyl ethyl	$ \begin{array}{c} - & OR \\ \oplus \\ -N \equiv N \\ - & NH_2 \\ - & CH_3 \\ - & C_2H_5 \\ CH_3 - & CH_2 - & CH_2 - \\ & & CH_3 \\ CH_3 - & C - \\ & & \\ CH_3 \\ \end{array} $	Alkoxy Diazo Amino Methyl Ethyl Propyl 1-1-dimethyl Ethyl

The order of IUPAC naming given below Secondary prefix + Primary prefix + word root + primary suffix + secondary suffix.

Secondary prefix - primary prefix - generic name

I. IUPAC Nomenclature of Branchedchain Alkanes

Branched-chain alkanes are named according to the following rules :

1. Longest Chain Rule : Locate the longest continuous chain of carbon atoms. This chain determines the parent name of the alkane. Notic that the longest continuous chain is chosen regardless of how the molecule is written.

$$\overset{1}{C}H_{3} - \overset{2}{C}H_{2} - \overset{3}{C}H_{2} - \overset{4}{C}H - \overset{5}{C}H_{2} - \overset{6}{C}H_{2} - \overset{7}{C}H_{2} - \overset{8}{C}H_{3} \\ | \\ CH_{3} \\ \overset{1}{C}H_{3} - \overset{6}{C}H_{2} - \overset{6}{C}H_{2} - \overset{5}{C}H_{2} - \overset{4}{C}H - CH_{3} \\ | \\ GH_{2} - \overset{2}{C}H_{2} - \overset{2}{C}H_{2} - \overset{1}{C}H_{3} \\ CH_{3} - \overset{4}{C}H - \overset{3}{C}H_{2} - \overset{2}{C}H_{2} - \overset{1}{C}H_{3} \\ | \\ ^{5}CH_{2} - \overset{6}{C}H_{2} - \overset{2}{C}H_{2} - \overset{1}{C}H_{3} \\ | \\ ^{5}CH_{2} - \overset{6}{C}H_{2} - \overset{2}{C}H_{2} - \overset{6}{C}H_{3} \\ | \\ \end{array}$$

Lowest Locant Rule or Lowest Sum Rule : The carbon atoms of the longest continuous chain, i.e., parent chain are numbered by arabic numerals 1, 2, 3, 4 from one end of the chain to the other. in such a manner that carbon atom carrying first substituent gets the lowest number. The number that locates the position of the substituent is known as **locant.**

However, if there are two or more substituents, the numbering of parent chain is done in such a way that the sum of locants is the lowest. This is called the **lowest sum rule**.

$$\begin{array}{c} \longrightarrow 1 & 2 & 3 & 4 & 5 \\ CH_3 - CH - CH_2 - CH_2 - CH_3 \\ 5 & |_4 & 2 \\ CH_3 \\ \end{array}$$
2-Methylpentane not
4-Methylpentane

$$\begin{array}{c} 6 & 5 & 4 & 3 & 2 & 1 \leftarrow \\ CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3 \\ \rightarrow 1 & 2 & 3 & |4 & 5 & 6 \\ CH_2 - CH_3 \end{array}$$

$$\begin{array}{c} 3-Ethylhexane \\ not \\ - & - & - & - & - \\ not \\ - & - & - & - & - \\ not \\ - & - & - & - & - \\ not \\ - & - & - & - & - \\ \end{array}$$

$$\xrightarrow{CH_3} \begin{array}{c} CH_3 \\ f_3 \\ - & CH_3 \\ CH_3 \\ - & CH_2 \\ - & CH_3 \\ - & CH_3$$

CORPORATE OFFICE : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota

2.