हमारा विश्वास... हर एक विद्यार्थी है ख़ास

PAPER WITH SOLUTION

JE:

Advanced 2019

PHYSICS PAPER - 1

कोटा का रिपिटर्स (12th पास) का सर्वश्रेष्ठ रिजल्ट देने वाला संसथान

JEE ADVANGED 2018 RESULT

Total Selection

709/2084 = 34,02\%

JEE MAIN 2019 RESULT

Students Qualified for JEE ADVANCED $2288 / 3316=68.99 \%$

Motíon
Nurturing potential through education

Toll Free : 1800-212-1799 H.O. : 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in | \boxtimes : info@motion.ac.in

CRITERIA FOR DIRECT ADMISSION IN STAR BATCHES

V STAR BATCH XII Pass (JEE M+A) ELIGIBILITY JEE Main'19 \%tile > 98\%tile JEE Advanced'19 Rank (Gen.) < 15,000

J STAR BATCH
 XII Pass (NEET/AIIMS)

ELIGIBILITY

NEET'19 Score > 450 Marks

AIIMS'19 \%tile > 98\%tile

P STAR BATCH XI moving (JEE M+A) ELIMIBILITY

> NTSE Stage-1 Qualified or NTSE Score > 160

100 marks in Science or Maths in Board Exam

H STAR BATCH XI Moving (NEET/AIIMS) ELIGIBILITY

NTSE Stage-1 Qualified or NTSE Score > 160

100 marks in Science or

 Maths in Board Exam
Scholarship Criteria

JEE Main Percentile	$\begin{aligned} & \text { SCHOLARSHIP+ } \\ & \text { STIPEND } \end{aligned}$	JEE Advanced Rank	SCHOLARSHIP+ STIPEND
98-99	100\%	10000-20000	100\%
Above 99	100\% + ₹ 5000/ month	Under 10000	100\% + ₹ $5000 /$ month
NEET 2019 Marks	$\begin{aligned} & \text { SCHOLARSHIP+ } \\ & \text { STIPEND } \end{aligned}$	NTSE STAGE-1 2019 Marks	$\begin{aligned} & \text { SCHOLARSHIP+ } \\ & \text { STIPEND } \end{aligned}$
450	100\%	160-170	100\% + ₹ 2000/ month
530-550	100\% + ₹ 2000/ month		
550-560	100\% + ₹ 4000/month	171-180	100\% + ₹ 4000/month
560	100\% + ₹ 5000/month	180+	100\% + ₹ 5000/month

FEATURES:

- Batch will be taught by NV Sir \& HOD's Only.
- Weekly Quizes apart from regular test.
- Under direct guidance of NV Sir.
- Residential campus facility available.
- 20 CBT (Computer Based Test) for better practice.
- Permanent academic coordinator for personal academic requirement.
- Small batch with only selected student.
- All the top brands material will be discussed.

हमारा विश्वास... हू एक विद्यार्थी है खुास

PHYSICS [JEE ADVANCED - 2019] PAPER - 1

Section -1 (Maximum Marks: 12)

- This section contains Four (04) question.
- Each question has Four option ONLY ONE of these four options is the correct answer.
- Each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme.

Full Marks : +3 If only Y the correct option is chosen.
Zero Marks : 0 If none of the option is chosen (i.e. the question is unanswered)
Negative Marks : -1 in all other cases.

1. A current carrying wire heats a metal rod. The wire provides a constant power (P) to the rod. The metal rod is enclosed in an insulated container. It is observed that the temperature (T) in the metal rod changes with time (t) as

$$
T(t)=T_{0}\left(1+\beta t^{1 / 4}\right)
$$

where β is a constant with appropriate dimension while T_{0} is a constant with dimension of of temperature. The heat capacity of the metal is :
(1) $\frac{4 \mathrm{P}\left(\mathrm{T}(\mathrm{t})-\mathrm{T}_{0}\right)}{\beta^{4} \mathrm{~T}_{0}^{2}}$
(2) $\frac{4 \mathrm{P}\left(\mathrm{T}(\mathrm{t})-\mathrm{T}_{0}\right)^{2}}{\beta^{4} \mathrm{~T}_{0}^{3}}$
(3) $\frac{4 \mathrm{P}\left(\mathrm{T}(\mathrm{t})-\mathrm{T}_{0}\right)^{4}}{\beta^{4} \mathrm{~T}_{0}^{5}}$
(4) $\frac{4 \mathrm{P}\left(\mathrm{T}(\mathrm{t})-\mathrm{T}_{0}\right)^{3}}{\beta^{4} \mathrm{~T}_{0}^{4}}$

Ans. 4
$d Q=H d T$
$\frac{d Q}{d t}=H \cdot \frac{d T}{d t}$
$\mathrm{P}=\mathrm{H} \cdot \mathrm{T}_{0} \cdot \beta \cdot \frac{1}{4} \cdot \mathrm{t}^{-3 / 4}$
$\frac{4 \mathrm{P}}{\mathrm{T}_{0} \cdot \beta}=\mathrm{t}^{-3 / 4} \cdot \mathrm{H}$
Now $\quad T-T_{0}=T_{0} \beta t^{1 / 4}$
So $\quad t^{3 / 4}=\left(\frac{T-T_{0}}{T_{0} \beta}\right)^{3}$
$\therefore \quad \mathrm{H}=\frac{4 \mathrm{P}\left(\mathrm{T}-\mathrm{T}_{0}\right)^{3}}{\mathrm{~T}_{0}^{4} \beta^{4}}$
2. In a radioactive sample. ${ }_{19}^{40} \mathrm{~K}$ nuclei either decay into stable ${ }_{20}^{40} \mathrm{Ca}$ nuclei with decay constant 4.5×10^{-10} per year or into stable ${ }_{18}^{40} \mathrm{Ar}$ nuclei with decay constant 0.5×10^{-10} per year. Given that in this sample all the stable ${ }_{20}^{40} \mathrm{Ca}$ and ${ }_{18}^{40} \mathrm{Ar}$ nuclei are produced by the ${ }_{19}^{40} \mathrm{~K}$ nuclei only. In time $\mathrm{t} \times 10^{9}$ years. If the ratio of the sum of stable ${ }_{20}^{40} \mathrm{Ca}$ and ${ }_{18}^{40} \mathrm{Ar}$ nuclei to the radioactive ${ }_{19}^{40} \mathrm{~K}$ nuclei is 99. The value of t will be. [Given : In $10=2.3$]
(1) 1.15
(2) 9.2
(3) 4.6
(4) 2.3

हमारा विश्वास... ह एक विद्यार्थी है खृास

Sol. 2
$\sum_{\lambda_{A r}}^{\lambda_{\mathrm{Ca}}} \mathrm{D}_{\mathrm{Ar}} \mathrm{Ca} \quad 0$
$\mathrm{t}=0$
$\frac{d N}{d t}=-\left(\lambda_{1}+\lambda_{2}\right) \times N$
$\log _{e}\left(\frac{N}{N_{0}}\right)=-\left(\lambda+\lambda_{2}\right) t$
$2.3 \times \log _{10}\left(\frac{N_{0}}{N_{0} / 100}\right)=5 \times 10^{-10} t$
$\frac{2.303 \times 2}{5 \times 10^{-10}}=\mathrm{t}$
$2.303 \times 0.4 \times 10^{10}=\mathrm{t}$
$\mathrm{t}=9.2 \times 10^{9}$ year
3. Consider a spherical gaseous cloud of mass density $\rho(r)$ in a free space where r is the radial distance from its center. The gaseous cloud is made of particles of equal mass moving in circular orbits about the common center with the same kinetic energy K . The force acting on the particles is their mutual gravitational force. If $\rho(r)$ is constant with time. the particle number density $n(r)=\rho(r) / m$ is : $(G=$ universal gravitational constant)
(1) $\frac{K}{\pi r^{2} m^{2} G}$
(2) $\frac{3 K}{\pi r^{2} m^{2} G}$
(3) $\frac{K}{2 \pi r^{2} m^{2} G}$
(4) $\frac{K}{6 \pi r^{2} m^{2} G}$

Ans. 3

Sol.

$$
\begin{aligned}
& \frac{G M m}{r^{2}}=\frac{m v^{2}}{r} \\
& =\frac{2}{r}\left(\frac{1}{2} m v^{2}\right) \\
& \Rightarrow \quad \frac{G M m}{r^{2}}=\frac{2 K}{r} \\
& \Rightarrow \quad M=\frac{2 K r}{G m}
\end{aligned}
$$

हमारा विश्वास... ह एक विद्यार्थी है खुार

$$
\begin{aligned}
& \Rightarrow \quad d M=\frac{2 K}{G m} d r \\
& \Rightarrow \quad 4 \pi r^{2} d r \rho=\frac{2 K}{G m} d r \\
& \therefore \quad \rho=\frac{K}{2 \pi G m r^{2}} \\
& \Rightarrow \quad \frac{p}{m}=\frac{k}{2 \pi G m^{2} r^{2}}
\end{aligned}
$$

4. A thin spherical insulating shell of radius R caries a uniformly distributed charge such that the potential at its surface is V_{0}. A hole with a small area $\alpha 4 \pi R^{2}(\alpha \ll 1)$ is made on the shell without affecting the rest of the shell. Which one of the following statements is correct.
(1) The ratio of potential at the center of the shell to that of the point at $\frac{1}{2} R$ from center towards the hole will be $\frac{1-\alpha}{1-2 \alpha}$
(2) The magnitude of electric field at the center of the shell is reduced by $\frac{\alpha V_{0}}{2 R}$
(3) The magnitude of electric field at a point located on a line passing through the hole and shell's center on a distance $2 R$ from the center of the spherical shell will be reduced by $\frac{\alpha V_{0}}{2 R}$
(4) The potential at the center of shell is reduced by $2 \alpha v_{0}$.

Sol. 1
$d q=\frac{Q}{4 \pi R^{2}} d A=Q \alpha$
Given
V at surface
$V_{0}=\frac{K Q}{R}$
V at C
$V_{c}=\frac{K Q}{R}-\frac{K \alpha Q}{R}=V_{0}(1-\alpha)$
V at B
$V_{B}=\frac{K Q}{R}-\frac{K(\alpha Q)}{R / 2}=V_{0}(1-2 \alpha)$
$\therefore \quad \frac{\mathrm{V}_{\mathrm{C}}}{\mathrm{V}_{\mathrm{B}}}=\frac{1-\alpha}{1-2 \alpha}$ (Option 1)

E at A
$E_{A}=\frac{K Q}{(2 R)^{2}}-\frac{K \alpha Q}{R^{2}}=\frac{K Q}{4 R^{2}}-\frac{\alpha V_{0}}{R}$

So reduced by $\frac{\alpha V_{0}}{R}$
E at C
$\mathrm{E}_{\mathrm{C}}=\frac{\mathrm{K}(\alpha \mathrm{Q})}{\mathrm{R}^{2}}=\frac{\alpha \mathrm{V}_{0}}{\mathrm{R}}$
So increased by $\frac{\alpha V_{0}}{R}$

Section -2 (Maximum Marks: 32)

- \quad This section contains Eight (08) question.
- Each question has Four options ONE OR MORE THAN ONE of these four options is(are) correct answers.
- For each question, choose the option(s) corresponding to (all) the correct answers.
- Answer to each question will be evaluated according to the following marking scheme. Full Marks : +4 If only (all) the correct option(s) is (are) is chosen.
Partial Marks : +3 If all the four options are correct but ONLY three options are chosen.
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen and both of which are correct.
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option.
Zero Marks : 0 If none of the options is chosed (i.e. the question is unanswered).
Negative Marks : -1 in all other cases.
- For example in a questions, If (A), (B) and (D) are the ONLY three options corresponding to correct answer, then
Choosing ONLY (A), (B) and (D) will get +4 marks.
Choosing ONLY (A) and (B) will get +2 marks;
Choosing ONLY (A) and (D) will get +2 marks.
Choosing ONLY (B) and (D) will get +2 marks;
Choosing ONLY (A) will get +1 marks;
Choosing ONLY (B) will get +1 marks;
Choosing ONLY (D) will get +1 marks;
Choosing no option (i.e. the question is unanswered) will get 0 marks; and
choosing any other combination of options will get -1 mark.

1. Two identical moving coil galvanometers have 10Ω resistance and full scale deflection at $2 \mu \mathrm{~A}$ current. One of them is converted into a voltmeter of 100 m V full scale reading and the other into an Ammeter of 1 mA full scale current using appropriate resistors. These are then used to measure the voltage and current in the Ohm's law experiment with $R=1000 \Omega$ resistor by using an ideal cell. Which of the following statement(s) is/are correct?
(1) The resistance of the Ammeter will be 0.02Ω (round off to $2^{\text {nd }}$ decimal place)
(2) The measured value of R will be $978 \Omega<\mathrm{R}<982 \Omega$
(3) If the ideal cell is replaced by a cell having internal resistance of 5Ω then the measured value of R will be more than 1000Ω
(4) The resistance of the voltmeter will be $100 \mathrm{k} \Omega$

हमारा विश्वास... ह एक विद्यार्थी है ख़ास

Sol. 1,2

$r_{g}=10 \Omega \quad i_{g}=2 \mu A$
For volt meter $v=i g\left(r_{g}+S\right)$
$100 \times 10^{-3}=2 \times 10^{-6} \underbrace{10+\mathrm{S}}_{\mathrm{Rv}_{\mathrm{v}}}$
$R_{v}=r_{q}+S$
$R_{v}=50000 \Omega$ (Option 4 is incorrect)
For ammeter $\mathrm{i}=\mathrm{i}_{\mathrm{g}}\left(1+\frac{\mathrm{r}_{\mathrm{g}}}{\mathrm{S}}\right)$

$$
R_{A}=\frac{r_{g} \times S}{r_{g}+S}
$$

$i=i_{g}\left(\frac{r_{g}+S}{S}\right)$
$\frac{R_{A}}{r_{g}}=\frac{S}{r_{g}+S}$

$i=i_{g} \frac{r_{g}}{R_{A}}$
$R_{A}=1 \times 10^{-3}=2 \times 10^{-6} \times 10$
$\mathrm{R}_{\mathrm{A}}=2 \times 10^{-2}$
$=0.02$ option (1)

$\mathrm{V}^{\prime}=\varepsilon-i \mathrm{R}_{\mathrm{A}} \quad \therefore$ resistance measured
$\frac{\varepsilon}{\mathrm{l}}=\mathrm{R}_{\varepsilon} \mathrm{n}=\frac{50000 \times 1000}{51000}+0.02 \quad=\mathrm{v}^{\prime} / \mathrm{i}$
\therefore Option (2)
$=\varepsilon-i R_{A} / i$
$=\varepsilon / \mathrm{i}-\mathrm{R}_{\mathrm{A}}$
$=50000 / 51=980.342$
Internal resistance will not change any their in otpion (2)

हमारा विश्वास... ह एक विद्यार्थी है खृास

2. A conducting wire of parabolic shape, initially $y=x^{2}$, is moving with velocity $\vec{V}=V_{0} \hat{i}$ in a nonuniform magnetic field $\vec{B}=B_{0}\left(1+\left(\frac{y}{L}\right)^{\beta}\right) \hat{k}$, as shown in figure. If $V_{0}, B_{0} L$ and β are positive constants and $\Delta \phi$ is the potential difference developed between the ends of the wire, then the correct statement(s) is/are :

(1) $|\Delta \phi|$ remains the same if the parabolic wire is replaced by a straight wire, $y=x$ initially, of length $\sqrt{2} L$
(2) $|\Delta \phi|=\frac{1}{2} B_{0} V_{0} L$ for $\beta=0$
(3) $|\Delta \phi|$ is proportional to the length of the wire projected on the y-axis.
(4) $|\Delta \phi|=\frac{4}{3} B_{0} V_{0} L$ for $\beta=2$

Sol. 1,3,4

For calculating the motional emf across the length of the wire, let us project wire such that $\overrightarrow{\mathrm{B}}, \overrightarrow{\mathrm{v}}, \hat{\ell}$ becomes mutually orthogonal. Thus
$d \varepsilon=B v_{0} d y=B_{0}\left[1+\left(\frac{y}{L}\right)^{\beta}\right] V_{0} d y$
$\varepsilon=\int_{0}^{L} B_{0}\left(1+\left(\frac{y}{L}\right)^{\beta}\right) V_{0} d y$
$=\mathrm{B}_{0} \mathrm{~V}_{0} \mathrm{~L}\left[1+\frac{1}{\beta+1}\right]$
emf in loop is proportional to L for given value of β.

हमारा विश्वास... ह एक तिद्यार्थी है खुवास

for
$\beta=0 ; \varepsilon=2 \mathrm{~B}_{0} \mathrm{~V}_{0} \mathrm{~L}$
$\beta=0 ; \varepsilon=B_{0} V_{0} L\left[1+\frac{1}{3}\right]=\frac{4}{3} B_{0} V_{0} L$
the length of the projection of the wire $y=x$ of length $\sqrt{2} L$ on the y-axis is L thus the answer remain unchanged
3. One mole of a monatomic ideal gas goes through a thermodynamic cucle, as shown in the volume versus temperature (V-T) diagram. The correct statement(s) is/are:
[R is the gas constant]

(1) The ratio of heat transfer during processes $1 \rightarrow 2$ and $2 \rightarrow 3$ is $\left|\frac{Q_{1 \rightarrow 2}}{Q_{2 \rightarrow 2}}\right|=\frac{5}{3}$
(2) The above thermodynamic cycle exhibits only isochoric and adiabatic processes.
(3) Work done in this thermodynamic cycle $(1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1)$ is $|W|=\frac{1}{2} R T_{0}$
(4) The ratio of heat transfer during processes $1 \rightarrow 2$ and $3 \rightarrow 4$ is $\left|\frac{\mathrm{Q}_{1 \rightarrow 2}}{\mathrm{Q}_{3 \rightarrow 4}}\right|=\frac{1}{2}$

Sol. 1,3

हमारा विश्वास... ह एक विद्यार्थी है खृास

(A) $\left|\frac{\Delta \mathrm{Q}_{1 \rightarrow 2}}{\Delta \mathrm{Q}_{3 \rightarrow 4}}\right|\left|\frac{\mathrm{NC} \mathrm{C}_{\mathrm{p}} \Delta \mathrm{T}_{1 \rightarrow 2}}{\mathrm{NC} \mathrm{C}_{\mathrm{p}} \Delta \mathrm{T}_{3 \rightarrow 4}}\right|=\frac{\mathrm{T}_{0}}{\mathrm{~T}_{0} / 2}=2$
(B) $\left|\frac{\Delta \mathrm{Q}_{1 \rightarrow 2}}{\Delta \mathrm{Q}_{2 \rightarrow 3}}\right|=\left|\frac{\mathrm{NC}_{\mathrm{p}} \Delta \mathrm{T}_{1 \rightarrow 2}}{\mathrm{NC}_{\mathrm{v}} \Delta \mathrm{T}_{2 \rightarrow 3}}\right|=\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}=\frac{5}{3}$
(C) $W_{\text {cycle }}=P_{0} V_{0}=n R\left[\frac{T_{0}}{2}\right]$ (Using point no. 4)
(D) wrong as no adiabatic process is involved
4. Let us consider a system of units in which mass and angular momentum are dimensionless. If length has dimension of L, which of the following statement(s) is/are correct ?
(1) The dimension of force is L^{-3}
(2) The dimension of energy is L^{-2}
(3) The dimension of power is L^{-5}
(4) The dimension of linear momentum is L^{-1}

Sol. 1,2,4

$[\mathrm{M}]=[\mathrm{Mass}]=\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
$[\mathrm{J}]=[$ Angular momentum $]=\left[\mathrm{ML}^{2 \mathrm{~T}^{-1}}\right]$
[L] = [Length]
Now ; $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]=\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
$\therefore \quad\left[\mathrm{L}^{2}\right]=[\mathrm{T}]$
Power $[\mathrm{P}]=\left[\mathrm{MLT}^{-2}\right.$. LT $\left.^{-1}\right]$
$=\left[\mathrm{ML}^{2 \mathrm{~T}^{-3}}\right]$
$=\left[\mathrm{L}^{2} \mathrm{~L}^{-6}\right]$
$[\mathrm{P}]=\left[\mathrm{L}^{-4}\right]$
Energy/work [W] $=\left[\mathrm{MLT}^{-2} . \mathrm{L}\right]$
$=\left[L^{2} L^{-4}\right]$
$=\left[\mathrm{L}^{-2}\right]$
Force $[\mathrm{F}]=\left[\mathrm{MLT}^{-2}\right]=\left[\mathrm{L} . \mathrm{L}^{-4}\right]=\left[\mathrm{L}^{-3}\right]$
Linear momentum $[\mathrm{p}]=\left[\mathrm{MLT}^{-1}\right]=\left[\mathrm{L} . \mathrm{L}^{-2}\right]$
$[\mathrm{p}]=\left[\mathrm{L}^{-1}\right]$
5. A cylindrical capillary tube of 0.2 mm radius is made by joining two capillaries T_{1} and T_{2} of different materials having water contact angles of 0° and 60°, respectively. The capillary tube is dipped vertically in water in two different configurations, case I and II as shown in figure. Which of the following option(s) is(are) correct ?
[Surface tension of water $=0.075 \mathrm{~N} / \mathrm{m}$, density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$, take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$]

हमारा विश्वास... ह एक विद्यार्थी है खृास

(1) The correction in the height of water column raised in the tube, due to weight of water contained in the meniscus, will be different for both cases.
(2) For case II, if the capillary joint is 5 cm above the water surface, the height of water column raised in the tube will be 3.75 cm . (Neglect the weight of the water in the meniscus)
(3) For case I, if the capillary joint is 5 cm above the water surface, the height of water column raised in the tube will be more than 8.75 cm . (Neglect the weight of the water in the meniscus)
(4) For case I, if the joint is kept at 8 cm above the water surface, the height of water column in the tube will be 7.5 cm . (Neglect the weight of the water in the meniscus)

Ans. 1,2,4 or 2,4

Balancing length in T_{1}
$\mathrm{h}=\frac{2(0.075) \cos 0^{\circ}}{\mathrm{R} \rho \mathrm{g}}=7.5 \mathrm{~cm}$
Balancing length in T_{2}
$h=\frac{2(0.075) \cos 60^{\circ}}{R \rho g}=3.75 \mathrm{~cm}$
(iii) If ()$_{\tau_{1}}<7.5 \mathrm{~cm}$ then meniscus will adjust its radius of curvature according to the situation but water will not enter in to t_{2} option 1 may or may not be correct its depends upon the situation.
Ans. is either 1, 2, 4 or 2,4
6. In the circuit shown, initially there is no charge on capacitors and keys S_{1} and S_{2} are open. The values of the capacitors are $\mathrm{C}_{1}=10 \mu \mathrm{~F}, \mathrm{C}_{2}=30 \mu \mathrm{~F}$ and $\mathrm{C}_{3}=\mathrm{C}_{4}=80 \mu \mathrm{~F}$.

Which of the statement(s) is/are correct ?
(1) The key S_{1} is kept closed for long time such that capacitors are fully charged. Now key S_{2} is closed, at this time, the instantaneous current across 30Ω resistor (between points P and Q) will be 0.2 A(round off to $1^{\text {st }}$ decimal place).
(2) If key S_{1} is kept closed for long time such that capacitors are fully charged, the voltage across the capacitor C_{1} will be 4 V .
(3) If key S_{1} is kept closed for long time such that capacitors are fully charged, the voltage, difference between points P and Q will be 10 V .
(4) At time $t=0$, the key S_{1} is closed, the instantaneous current in the closed circuit will be 25 mA .

हमारा विश्वास... ह एक विद्यार्थी है खुास

Sol. 2,4

Just after closing of switch charge on C is zero.
$\therefore \quad$ Replace all capacitors with wire.

$i=\frac{5}{70+100+30}=\frac{5}{200}=25 \mathrm{~mA}$
Now S_{1} is kept closed for long time circuit is in steady state

$\frac{9}{10}+\frac{9}{80}+\frac{9}{80}-5=0$
$\frac{109}{80}=5$
$\therefore \quad \mathrm{q}=40 \mu \mathrm{C}$
$\therefore \quad V$ across $C_{1}=40 / 10=4$ volt
Now just after closing of S_{2} charge on each capacitor remain same

KVL
$-10+x \times 30+40 / 10+y \times 70=0$
$30 x+70 y=6 \quad \ldots(1)$
$\frac{40}{80}+5+(x-y) 30-\frac{40}{80}+(x-y) \times 100-10+x \times 30=0$
$160 x-130 y-6=0 \ldots$ (2)
$y=96 / 1510$
$x=0.05 \mathrm{amp}$.

हमारा विश्वास... हर एक विद्यार्थी है खुणास

7. A charged shell of radius R carries a total charge Q. Given ϕ as the flux of electric field through a closed cylindrical surface of height h, radius r \& with its center same as that of the shell. Here, center of cylinder is a point on the axis of the cylinder which is equidistant from its top $\&$ bottom surfaces. Which of the following option (s) is/are correct ?
[ε_{0} is the permittivity of free space]
(1) If $h<\frac{8 R}{5}$ and $r=\frac{3 R}{5}$ then $\phi=0$
(2) If $h>2 R$ and $r=\frac{3 R}{5}$ then $\phi=\frac{Q}{5 \varepsilon_{0}}$
(3) If $h>2 R$ and $r>R$ then $\phi=\frac{Q}{\varepsilon_{0}}$
(3) if $h>2 R$ and $r=\frac{4 R}{5}$ then $\phi=\frac{Q}{5 \varepsilon_{0}}$

Sol. 1,2,3

$\phi=0$
so for $\mathrm{h}<\frac{8 \mathrm{R}}{5} \quad \phi=0$
(C) for $h=2 R \quad r=\frac{4 R}{5}$

Shaded charge $=2 \pi\left(1-\cos 53^{\circ}\right) \times \frac{\mathrm{Q}}{4 \pi}$

$$
\therefore \quad=\frac{Q}{5}
$$

हमारा विश्वास... ह एक विद्यार्थी है खृास

$\therefore \quad \mathrm{q}_{\text {enclosed }}=\frac{2 \mathrm{Q}}{5}$
$\therefore \quad \phi=\frac{2 Q}{5 \varepsilon_{0}}$
$\therefore \quad$ for $h>2 R r=\frac{4 R}{5}$
$\therefore \quad \phi=\frac{2 Q}{5 \varepsilon_{0}}$
(d) line option C for $h=2 R \quad r=\frac{3 R}{5}$
$q_{\text {enclosed }}=2 \times 2 \pi\left(1-\cos 37^{\circ}\right) \frac{Q}{4 \pi}=\frac{Q}{5}$
$\therefore \quad \phi=\frac{\mathrm{Q}}{5 \varepsilon_{0}}$
8. A thin convex lens is made of two materials with refractive indices n_{1} and n_{2}, as shown in figure. The radius of curvature of the left and right spherical surfaces are equal. f is the focal length of the lens when $n_{1}=n_{2}=n$. The focal length is $f+\Delta f$ when $n_{1}=n$ and $n_{2}=n+\Delta n$. Assuming Δn $\ll(n-1)$ and $1<n<2$, the correct statement(s) is/are.

(1) If $\frac{\Delta n}{n}<0$ then $\frac{\Delta f}{f}>0$
(2) $\left|\frac{\Delta f}{f}\right|<\left|\frac{\Delta n}{n}\right|$
(3) The relation between $\frac{\Delta f}{f}$ and $\left|\frac{\Delta n}{n}\right|$ remains unchanged if both the convex surfaces are replaced by concave surfaces of the same radius of curvature.
(4) For $n=1.5, \Delta n=10^{-3}$ and $f=20 \mathrm{~cm}$, the value of $|\Delta f|$ will be 0.02 cm (round off to $2^{\text {nd }}$ decimal place).

Sol. 1,3,4

When $\mathrm{n}_{1}=\mathrm{n}_{2}=\mathrm{n}$
$\frac{1}{f}=(n-1) \times \frac{2}{R}$

हमारा विश्वास... ह एक विद्यार्थी है ख़ास

So, $f=\frac{R}{2(n-1)}$
$2^{\text {nd }}$ Case:
$\frac{1}{f_{1}}=\frac{n-1}{R}$
$\frac{1}{f_{2}}=\frac{(n+\Delta n)-1}{R}$
$\frac{1}{f_{e q}}=\frac{1}{f+\Delta f}=\left(\frac{n-1}{R}\right)+\frac{(n+\Delta n)-1}{R}=\frac{2(n-1)+\Delta n}{R}$
$\Delta f=\left(\frac{R}{2(n-1)+\Delta n}\right)-\left(\frac{R}{2(n-1)}\right)$
$=\frac{R}{2}\left[\frac{(n-1)-(n-1+\Delta n)}{(n-1+\Delta n)(n-1)}\right]=\frac{-\Delta n}{(n-1)^{2}} \times \frac{R}{2}$
$\frac{\Delta f}{f}=-\frac{\Delta n}{2(n-1)}$
(1) If $\frac{\Delta n}{n}<0$ then $\frac{\Delta f}{f}>0$ from equation (1)
(2) $2 \mathrm{n}-2<\mathrm{n}$ because $\mathrm{n}<2$
$\Rightarrow \frac{\Delta f}{f}=\frac{1}{2}\left|\frac{\Delta n}{n-1}\right|>\frac{\Delta n}{n}$

So, $\frac{\Delta f}{f}>\left|\frac{\Delta n}{n}\right|$ So (2) is wrong
(3) Relation between $\frac{\Delta f}{f}$ and $\frac{\Delta n}{n}$ is independent of R so (3) is correct
(4) $|\Delta f|=\frac{\mathrm{f} \Delta \mathrm{n}}{(\mathrm{n}-1)}=\frac{\left(20 \times 10^{-3}\right)}{1.5-1}=40 \times 10^{-3}=0.04$

हमारा विश्वास... ह एक विद्यार्थी है खुास

SECTION - 3 [MAXIMUM MARKS : 18]

This section contains six (06) questions. The answer to each question is a Numerical value. For each question, enter the correct numerical value of the answer using the mouse and the onscreen virtual numerical keypad in the place designated to enter teh answer. if the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places. Answer to each question will be evaluated according to the following marking scheme.
Full Marks : +3 If ONLY the correct numerical value is entered Zero Marks : 0 in all other cases.

1. A block of weight 100 N is suspended by copper and steel wires of same cross sectional area 0.5 cm^{2} and, length $\sqrt{3} \mathrm{~m}$ and 1 m , respectively. Their other ends are fixed on a ceiling as shown in figure. The angles subtended by copper and steel wires with ceiling are 30° and 60°, respectively. If elongation in copper wire is $\left(\Delta l_{c}\right)$ and elongation in steel wire is $\left(\Delta l_{s}\right)$, then the ratio
$\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{I}_{\mathrm{S}}}$ is -
[Young's modulus for copper and steel are $1 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ and $2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$, respectively]

Sol. 2

$\frac{T_{s}}{2}=T_{c} \frac{\sqrt{3}}{2}$
$T_{s}=\sqrt{3} T_{c}$
$\frac{\Delta \ell_{\mathrm{c}}}{\Delta \ell_{\mathrm{s}}}=\left(\frac{\mathrm{T}_{\mathrm{c}}}{\mathrm{T}_{\mathrm{s}}}\right)\left(\frac{\ell_{\mathrm{c}}}{\ell_{\mathrm{s}}}\right)\left(\frac{\mathrm{Y}_{\mathrm{s}}}{\mathrm{Y}_{\mathrm{c}}}\right)=\left(\frac{1}{\sqrt{3}}\right)\left(\frac{\sqrt{3}}{1}\right)\left(\frac{2 \times 10^{11}}{1 \times 10^{11}}\right)=2$

हमारा विश्वास... ट एक विद्यार्थी है खुास

2. A parallel plate capacitor of capacitance C has spacing d between two plates having area A. The region between the plates is filled with N dielectric layers, parallel to its plates, each with thickness $\delta=\frac{d}{N}$. The dielectric constant of the $m^{\text {th }}$ layer is $K_{m}=K\left(1+\frac{m}{N}\right)$. For a very large $N\left(>10^{3}\right)$, the capacitance C is $\alpha\left(\frac{k \varepsilon_{0} A}{d \ln 2}\right)$. The value of α will be [ε_{0} is the permittivity of free space]
Sol. 1

$\frac{x}{m}=\frac{D}{N}$
$d\left(\frac{1}{C}\right)=\frac{d x}{K_{m} \varepsilon_{0} A}=\frac{d x}{K \varepsilon_{0} A\left(1+\frac{m}{N}\right)}=\frac{d x}{K \varepsilon_{0} A\left(1+\frac{X}{D}\right)}$
$\frac{1}{C_{\text {eq }}}=\int d\left(\frac{1}{C}\right)=\int_{0}^{D} K \varepsilon_{0} A(D+x)$
$\frac{1}{C_{e q}}=\frac{D}{\mathrm{~K}_{0} \mathrm{~A}} \ln 2$
$C_{e q}=\frac{K \varepsilon_{0} A}{D \ln 2}$. therefore $\alpha=1$
3. A liquid at $30^{\circ} \mathrm{C}$ is poured verly slowly into a Calorimeter that is at temperature of $110^{\circ} \mathrm{C}$. The boilding temperature of the liquid is $80^{\circ} \mathrm{C}$. It is found that the first 5 gm of the liquid completely evaporates. After pouring another 80 gm of the liquid the equilibrium temperature is found to be $50^{\circ} \mathrm{C}$. The ratio of the Latent heat of the liquid to its specific heat will be \qquad C°.
[Neglect the heat exchange with surrounding.

Sol. 270

Let $m=$ mass of calorimeter,
$x=$ specific heat of calorimeter
$s=$ specific heat of liquid
$L=$ latent heat of liquid

हमारा विश्वास... ह एक विद्यार्थी है खृास

First 5 g of liquid at 30° is poured to calorimeter at $110^{\circ} \mathrm{C}$
$\therefore \mathrm{m} \times \mathrm{x} \times(100-80)=5 \times \mathrm{s} \times(80 \times 30)+5 \mathrm{~L}$
$\Rightarrow \mathrm{mx} \times 30=250 \mathrm{~s}+5 \mathrm{~L}$
Now, 80 g of liquid at 30° is poured into calorimeter at $80^{\circ} \mathrm{C}$, the equilibrium temperature reaches to $50^{\circ} \mathrm{C}$
$\therefore \mathrm{m} \times \mathrm{x} \times(80-30)=80 \times \mathrm{s} \times(50-30)$
$\Rightarrow \mathrm{mx} \times 30=1600 \mathrm{~s}$
From (i) and (ii)
$250 \mathrm{~s}+5 \mathrm{~L}=1600 \mathrm{~s} \Rightarrow 5 \mathrm{~L}=1350 \mathrm{~s}$
$\Rightarrow \frac{\mathrm{L}}{\mathrm{s}}=270$
4. A train S1, moving with a uniform velocity of $108 \mathrm{~km} / \mathrm{h}$, approaches another train S 2 standing on a platform. An observer O moves with a uniform velocity of $36 \mathrm{~km} / \mathrm{h}$ towards S 2 , as shown in figure. Both the trains are blowing whistles of same frequency 120 Hz . When O is 600 m away from S2 and distance between S 1 and S 2 is 800 m , the number of beats heard by O is \qquad . [Speed of the sound $=330 \mathrm{~m} / \mathrm{s}$]

Sol. 8.12 to 8.13

Speed of sound $=330 \mathrm{~m} / \mathrm{s}$
Calculate beat $f_{\text {req }}$

$f_{b}=120\left[\left(\frac{330+10 \cos 53^{\circ}}{330-30 \cos 37^{\circ}}\right)-\left[\frac{330+10}{330}\right]\right]=120\left[\frac{336}{306}-\frac{34}{33}\right]=8.128 \mathrm{~Hz}$

हमारा विश्वास... ह एक विद्यार्थी है खुास

5. A particle is moved along a path $A B-B C-C D-D E-E F-F A$, as shown in figure, in presence of a force $\vec{F}=(a y \hat{L}+2 a x \hat{J}) N$, Where x and y are in meter and $\alpha=-1 \mathrm{Nm}^{-1}$. The work done on the particle by this force \vec{F} will be \qquad Joule.

Sol. 0.75 J
As $\alpha=-1$
$\therefore \vec{F}=-\underbrace{y \hat{i}-x \hat{j}}_{1}-x \hat{j}$
This is now a perfect differential format whose work done is zero for a complete cycle.
Hence for $-x j$ only WD needs to be calculated.

$$
\begin{aligned}
\therefore \mathrm{W} & =1 \times 0.5+0.5 \times 0.5 \\
& =0.5+0.25 \\
& =0.75 \mathrm{~J}
\end{aligned}
$$

6. A planar structure of length L and width W is made of two different optical media of refractive indices $n_{1}=1.5$ and $n_{2}=1.44$ as shown in figure. If $L \gg W$. a ray entering from end $A B$ will emerge from end CD only if the total internal reflection condition is met inside the structure. For $L=9.6 \mathrm{~m}$, if the incident angle θ is varried, the maximum time taken by ray to exit the plane CD is $t \times 10^{-}$ ${ }^{9} \mathrm{~S}$, where t is \qquad
[Speed of light $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$]

हमारा विश्वास... ह एक विद्यार्थी है खुास

Sol. 50
$x=5$

$1.5 \sin \theta_{0}=1.44 \sin 90^{\circ}$
$\sin \theta_{c}=\frac{1.44}{1.50}=\frac{24}{25}$
$\therefore \sin \theta_{c}=\frac{x}{d}=\frac{24}{25}$
$d=\frac{25 x}{24}$
\therefore total length travel by light $=\frac{25}{24} \times 9.6=10 \mathrm{~m}$
$\therefore t=\frac{S}{\left(\frac{\mathrm{C}}{\mathrm{n}_{2}}\right)}=\frac{10}{\frac{3 \times 10^{8}}{1.5}}$
$=\frac{1}{2} \times 10^{-7}=5 \times 10^{-8}$
$\mathrm{t}=50 \mathrm{~ns}$
$\mathrm{t}=5 \times 10^{-8}$

Based on JEE Advanced'19

MARKS	FEE (After Scholarship)
140 above	Drona Residential Program Free
120 to 139	₹ 0
100 to 120	₹ 14,500
90 to 99	₹ 29,000
80 to 89	₹ 43,500
69 to 79	₹ 98,000
40 to 69	₹ 87,000

*Scholarship Applicable at Kota Center Only

Based on JEE Main'19

	JEE Main Percentile
99 \& Above	
97.5 To 99	
97 To 97.5	
96.5 To 97	
96 To 96.5	
95.5 To 96	
95 To 95.5	
93 To 95	
90 To 93	
85 To 90	
80 To 85	
75 To 80	

English	Hindi
Fees (After Scholarship)	
Drona Residential Program Free	
₹ 0	₹ 0
₹ 14,500	₹ 14,500
₹ 29,000	₹ 29,000
₹ 58,000	₹ 58,000
₹ 65,250	₹ 65,250
₹ 72,500	₹ 72,500
₹ 87,000	₹ 87,000
₹ $1,01,500$	₹ 94,250
₹ 1,08,750	₹ $1,01,500$
₹ 1,16,000	₹ $1,08,750$
₹ 1,30,500	₹ $1,23,250$

JEE MAIN Special Batch for Class 14th Repeaters

Flat 50\% Scholarship

