हमारा विश्वास... हर एक विद्यार्थी है ख़ास

PAPER WITH SOLUTION

JE:

Advanced 2019

lots
MATHEMATICS PAPER - 2
$4 \times$

IIT/NIT | NEET / AIIMS | NTSE/IJSO/OLYMPIADS

कोटा का रिपिटर्स (12th पास) का सर्वश्रेष्ठ रिजल्ट देने वाला संसथान

Motíon

CRITERIA FOR DIRECT ADMISSION IN STAR BATCHES

V STAR BATCH XII Pass (JEE M+A) ELIGIBILITY JEE Main'19 \%tile > 98\%tile JEE Advanced'19 Rank (Gen.) < 15,000

J STAR BATCH XII Pass (NEET/AIIMS)

ELIGIBILITY

NEET'19 Score > 450 Marks

AIIMS'19 \%tile > 98\%tile

I STAR BAICH XI Moving (NEET/AIIMS) ELIMIBILITY

 NTSE Stage-1 Qualified

 NTSE Stage-1 Qualified or NTSE Score > 160

 or NTSE Score > 160}

100 marks in Science or Maths in Board Exam

P STAR BATCH XI moving (JEE M+A) ELIMIBILITY

$$
\begin{aligned}
& \text { NTSE Stage-1 Qualified } \\
& \text { or NTSE Score > } 160
\end{aligned}
$$

Maths in Board Exam
 100 marks in Science or

Scholarship Criteria

JEE Main Percentile	SCHOLARSHIP+ STIPEND	JEE Advanced Rank	SCHOLARSHIP+ STIPEND
98-99	100\%	10000-20000	100\%
Above 99	100\% + ₹ 5000/ month	Under 10000	100\% + ₹ 5000/month
NEET 2019 Marks	$\begin{aligned} & \text { SCHOLARSHIP+ } \\ & \text { STIPEND } \end{aligned}$	NTSE STAGE-1 2019 Marks	$\begin{aligned} & \text { SCHOLARSHIP+ } \\ & \text { STIPEND } \end{aligned}$
450	100\%	160-170	100\% + ₹ 2000/month
530-550	100\% + ₹ 2000/month		100\% + ₹ 4000/month
550-560	100\% + ₹ 4000/month		4000/
560	100\% + ₹ 5000/month	180+	100\% + ₹ 5000/month

FEATURES:

- Batch will be taught by NV Sir \& HOD's Only.
- Weekly Quizes apart from regular test.
- Under direct guidance of NV Sir.
- Residential campus facility available.
- 20 CBT (Computer Based Test) for better practice.
- Permanent academic coordinator for personal academic requirement.
- Small batch with only selected student.
- All the top brands material will be discussed.

ह्मारा विश्वास... हम एक तिद्यार्थी है खुवास

MATHS [JEE ADVANCED - 2019] PAPER - 2

SECTION-1 (Maximum marks :32)

- This section contains EIGHT (08) questions.
- Each question has FOUR options ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme.

Full marks $\quad:+4$ If only (all) the correct option(s) is (are) chosen;
Partial Marks $\quad:+3$ If all the four options are correct but ONLY three options are chosen
and both of which are correct
Partial Marks $\quad:+1$ If two or more options are correct but ONLY one option is chosen and it is a correct option.
Zero Marks : 0 If two or more options is chosen (i.e. the question is unanswered) Negative Marks : -1 in all other cases

- For example, in a question, if (A),(B) and (D) are the ONLY three options corresponding to correct answer, then
choosing ONLY (A), (B) and (D) will get +4 marks
choosing ONLY (A) and (B) will get +2 marks
choosing ONLY (A) and (D) will get +2 marks
choosing ONLY (B) and (D) will get +2 marks
choosing ONLY (A) will get +1 mark
choosing ONLY (B) will get +1 mark
choosing ONLY (D) will get +1 mark
choosing no option (i.e., the question is unanswered) will get 0 marks; and
choosing any other combination of options will get -1 mark

1. Three lines

$$
\begin{aligned}
& L_{1}: \vec{r}=\lambda \hat{i} \quad \lambda \in R \\
& L_{2}: \vec{r}=\hat{k}+\mu \hat{i}, \mu \in R \\
& L_{3}: \vec{r}=\hat{i}+\hat{j}+v \hat{k}, v \in R
\end{aligned}
$$

are given. For which point(s) Q on L_{2} can we find a point P on L_{1} and a point R on L_{3} so that P, Q and R are collinear ?
(1) $\hat{k}+\hat{j}$
(2) $\hat{k}-\frac{1}{2} \hat{j}$
(3) \hat{k}
(4) $\hat{k}+\frac{1}{2} \hat{j}$

Ans. 2,4
$L_{1} \rightarrow \bar{r}=\lambda \hat{i} \Rightarrow \frac{x-0}{\lambda}=\frac{y-0}{0}=\frac{z-0}{0}$
$L_{2} \rightarrow \bar{r}=\hat{k}+\mu \hat{j} \Rightarrow \frac{x-0}{0}=\frac{y-0}{\mu}=\frac{z-1}{0}$
$L_{3} \rightarrow \bar{r}=\hat{i}+\hat{j}+v \hat{k} \Rightarrow \frac{x-1}{0}=\frac{y-1}{0}=\frac{z-1}{v}$
Point P on $L_{1} P \equiv(\lambda, 0,0)$
Point Q on $L_{2} Q \equiv(0, \mu, 1)$
Point R on $L_{3} R R \equiv(1,1, v)$
P, Q, R an collinear
$\therefore \overrightarrow{\mathrm{PQ}} \| \overrightarrow{\mathrm{QR}}$

हमारा विश्वास... ह एक विद्यार्यी है खुवास

$\overrightarrow{\mathrm{PQ}} \| K \overrightarrow{\mathrm{QR}}$
$\frac{-\lambda}{1}=\frac{\mu}{1-\mu}=\frac{1}{v-1}=k$
$\lambda=-k$
$\frac{\mu}{1-\mu}=k$
$\mu=\mathrm{k}-\mathrm{k} \mu$
$\mu(1+k)=k$
$\mu=\frac{\mathrm{k}}{\mathrm{k}+1}$
$\frac{1}{v-1}=k$
$\Rightarrow 1=\mathrm{k} v-\mathrm{k}$
$\frac{1+k}{k}=v$
$\therefore \mu=\frac{-\lambda}{1-\lambda}=\frac{1}{v}$
μ cannot take value $0 \& 1$
2. Let $f: R \rightarrow R$ be given by $f(x)=(x-1)(x-2)(x-5)$. Define

$$
F(x)=\int_{0}^{x} f(t) d t, \quad x>0
$$

Then which of the following options is/are correct ?
(1) F has two local maxima and one local minimum in $(0, \infty)$
(2) F has a local maximum at $x=2$
(3) $F(x) \neq 0$ for all $x \in(0,5)$
(4) F has a local minimum at $x=1$

Sol. 2, 4, 3

$F^{\prime}(x)=f(x)$
$F^{\prime}(x)=(x-1)(x-2)(x-5)$

at $x=1,5 \rightarrow \quad$ minima

$$
x=2 \quad \rightarrow \quad \text { maxima }
$$

Now

$F^{\prime}(x)=x^{3}-x^{2}+17 x-10$

Integrate

हमारा विश्वास... ह एक विद्यार्थी है खुास

$F(x)=\frac{x^{4}}{4}-\frac{8}{3} x^{3}+\frac{17}{2} x^{2}-10 x+C$
$F(0)=0 \Rightarrow C=0$
$F(x)=\frac{x^{4}}{4}-\frac{8}{3} x^{3}+\frac{17}{2} x^{2}-10 x$
For $x \in(0,5) \Rightarrow F(x) \neq 0$
3. Let $f: R \rightarrow R$ be a function We say that f has

PROPERTY 1 if $\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{\sqrt{|h|}}$ exists and is finite, and
PROPERTY 2 if $\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h^{2}}$ exists and is finite.
Then which of the following options is/are correct ?
(1) $f(x)=|x|$ has PROPERTY 1
(2) $f(x)=x|x|$ has PROPERTY 2
(3) $f(x)=x^{2 / 3}$ has PROPERTY 1
(4) $f(x)=\sin x$ has PROPERTY 2

Sol. 1,3

(a) $f(x)=|x|$

Property I $\quad \operatorname{limit}_{h \rightarrow 0} \frac{|h|-0}{\sqrt{|h|}} \Rightarrow \operatorname{limit}_{n \rightarrow 0} \sqrt{|h|}=0$
Property II $\quad \operatorname{limit}_{h \rightarrow 0} \frac{|h|-0}{h^{2}} \Rightarrow \operatorname{limit}_{h \rightarrow 0} 1 / h \rightarrow \infty$ (Not Satisfies)
(b) $f(x)=x|x|$
property I $\quad \operatorname{limit}_{\mathrm{h} \rightarrow 0} \frac{\mathrm{~h}|\mathrm{~h}|-0}{\sqrt{|\mathrm{~h}|}}=0$
Property II $\quad \operatorname{limit}_{h \rightarrow 0} \frac{h|h|-0}{h^{2}} \rightarrow$ does not exist
(c) $f(x)=x^{2 / 3}$

Property I $\quad \operatorname{limit}_{h \rightarrow 0} \frac{h^{2 / 3}-0}{\sqrt{|h|}}$
$h \rightarrow 0^{+} \quad \operatorname{limit}_{h \rightarrow 0} \frac{h^{2 / 3}}{h^{1 / 2}}=0$
$h \rightarrow \mathrm{O}^{-} \quad \operatorname{limit}_{\mathrm{h} \rightarrow 0} \frac{\mathrm{~h}^{2 / 3}}{-\mathrm{h}^{1 / 2}}=0$
Property II $\quad \operatorname{limit}_{h \rightarrow 0} \frac{h^{2 / 3}}{h^{1 / 2}} \rightarrow \infty$
(d) $f(x)=\sin x$
property $2 \quad \operatorname{limit}_{h \rightarrow 0} \frac{\sinh -0}{h^{2}} \rightarrow \infty$

हमारा विश्वास... ह एक विद्यार्यी है खुवास

4. For non-negative integers n, let

$$
f(n)=\frac{\sum_{k=0}^{n} \sin \left(\frac{k+1}{n+2} \pi\right) \sin \left(\frac{k+2}{n+2} \pi\right)}{\sum_{k=0}^{n} \sin ^{2}\left(\frac{k+1}{n+2} \pi\right)}
$$

Assuming $\cos ^{-1} x$ takes values in $[0, \pi]$, which of the following options is/are correct ?
(1) $\sin \left(7 \cos ^{-1} f(5)\right)=0$
(2) If $\alpha=\tan \left(\cos ^{-1} f(6)\right)$, then $\alpha^{2}+2 \alpha-1=0$
(3) $\lim _{n \rightarrow 0} f(n)=\frac{1}{2}$
(4) $f(4)=\frac{\sqrt{3}}{2}$

Sol. 1,2,4

$$
\begin{aligned}
& f(n)=\frac{\sum_{K=0}^{n} \cos \left[\left(\frac{K+1}{n+2}\right)-\left(\frac{K+2}{n+2}\right) \pi\right]-\cos \left[\left(\frac{K+1}{n+2}+\frac{K+2}{n+2}\right) \pi\right]}{\sum_{K=0}^{n} 2 \sin ^{2}\left(\frac{K+1}{n+2}\right) \pi} \\
& =\frac{\sum_{K=0}^{n}\left[\left(\cos \frac{\pi}{n+2}\right)-\cos \left(\frac{2 K+3}{n+2}\right) \pi\right]}{\sum_{K=0}^{n}\left[1-\cos 2\left(\frac{K+1}{n+2}\right) \pi\right]} \\
& =\frac{\left(\cos \left(\frac{\pi}{n+2}\right)\right)(n+1)-\left[\cos \left(\frac{3 \pi}{n+2}\right)+\cos \left(\frac{5 \pi}{n+2}\right)+\ldots+\cos \left(\frac{2 n+3}{n+2}\right) \pi\right]}{(n+1)-\sum_{K=0}^{n} \cos 2\left(\frac{K+1}{n+2}\right) \pi} \\
& =\frac{\left(\cos \left(\frac{\pi}{n+2}\right)\right)(n+1)-\frac{\sin (n+1) \frac{\pi}{n+2}}{\sin \left(\frac{\pi}{n+2}\right)} \cos \left[\left(\frac{n+3}{n+2}\right) \pi\right]}{n+2} \\
& = \\
& =\frac{\left(\cos \left(\frac{\pi}{n+2}\right)\right)(n+1)+\cos \left(\frac{\pi}{n+2}\right)}{\sin \left((n+1) \frac{\pi}{n+2}\right)} \cdot(\cos \pi) \\
& \left.=\frac{\sin \left(\frac{\pi}{n+2}\right)}{(n+1)-\frac{(n)}{n+2}}\right) \\
& = \\
& =
\end{aligned}
$$

हमारा विश्वास... हर एक विद्यार्थी है खुास

$f(n)=\frac{\cos \left(\frac{\pi}{n+2}\right)(n+2)}{(n+2)}$
$F(n)=\cos \left(\frac{\pi}{n+2}\right)$
(a) $f(5)=\cos \left(\frac{\pi}{7}\right)$

$$
\sin \left(7 \frac{\pi}{7}\right)=0
$$

(b) $\quad \alpha=\tan \left[\cos ^{-1}(\cos \pi / 8)\right]$

$$
=\tan \frac{\pi}{8}
$$

$$
\alpha=\sqrt{2}-1
$$

$$
\text { Then } \alpha^{2}+2 \alpha-1=0
$$

(c) $\lim _{n \rightarrow \infty} \cos \left(\frac{\pi}{n+2}\right)=1$
(d) $f(4)=\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$
5. Let $x \in R$ and let

$$
P=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 2 \\
0 & 0 & 3
\end{array}\right], \quad Q=\left[\begin{array}{ccc}
2 & x & x \\
0 & 4 & 0 \\
x & x & 6
\end{array}\right] \quad \text { and } R=\mathrm{PQP}^{-1}
$$

Then which of the following options is/are correct ?
(1) For $x=0$, if $R\left[\begin{array}{l}1 \\ a \\ b\end{array}\right]=6\left[\begin{array}{l}1 \\ a \\ b\end{array}\right]$, then $a+b=5$
(2) There exists a real number x such that $P Q=Q P$
(3) For $\mathrm{x}=1$, there exists a unit vector $\alpha \hat{\mathbf{i}}+\beta \hat{\mathbf{j}}+\gamma \hat{\mathrm{k}}$ for which $\mathrm{R}\left[\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
(4) $\operatorname{det} R=\operatorname{det}\left[\begin{array}{lll}2 & x & x \\ 0 & 4 & 0 \\ x & x & 5\end{array}\right]+8$, for all $x \in R$

Sol. 1,4

$R P=P Q$
$\operatorname{det}(R) \operatorname{det}(P)=(\operatorname{det} P)(\operatorname{dep} Q)$
$(\operatorname{det} R)(6)=(6)\left(12-x^{2}\right)(4)$
det $R=48-4 x^{2} \longrightarrow$ optioin D correct
Now P-1 $=\frac{1}{6}\left[\begin{array}{ccc}6 & -3 & 0 \\ 0 & 3 & -2 \\ 0 & 0 & 2\end{array}\right]$
$R=P Q P^{-1}$
$R=\frac{1}{6}\left[\begin{array}{ccc}6 x+12 & 3 x+6 & 4-10 x \\ 12 x & 24 & 8-4 x \\ 18 x & 0 & 36-6 x\end{array}\right]$
Option $\mathrm{I} \rightarrow \mathrm{x}=0$
$\mathrm{R}=\frac{1}{6}\left[\begin{array}{ccc}12 & 6 & 4 \\ 0 & 24 & 8 \\ 0 & 0 & 36\end{array}\right]$
$=\frac{1}{6}\left[\begin{array}{llc}2 & 1 & 2 / 3 \\ 0 & 4 & 4 / 3 \\ 0 & 0 & 6\end{array}\right]$
$\Rightarrow R\left[\begin{array}{l}1 \\ a \\ b\end{array}\right]=6\left[\begin{array}{l}1 \\ a \\ b\end{array}\right] \Rightarrow\left[\begin{array}{c}2+a+\frac{2}{3} b \\ 4 a+\frac{4}{3} b \\ 6 b\end{array}\right]=\left[\begin{array}{l}6 \\ 6 a \\ 6 b\end{array}\right]$
$a+\frac{2}{3} b=4, \frac{4}{3}-b=2 a \Rightarrow a=2, b=3$
$a+b=5$
Option (b) PQ = QP Not possible
Option (c) $x=1$
$R=\frac{1}{6}\left[\begin{array}{ccc}18 & 9 & -6 \\ 12 & 24 & 4 \\ 18 & 0 & 30\end{array}\right]$
$=\left[\begin{array}{ccc}3 & 3 / 2 & -1 \\ 2 & 4 & 2 / 3 \\ 3 & 0 & 5\end{array}\right]$
$\mathrm{R}\left[\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$\left.\begin{array}{c}3 \alpha+\frac{3}{2} \beta-\gamma=0 \\ 2 \alpha+4 \beta+\frac{2}{3} \gamma=0 \\ 3 \alpha+5 \gamma=0\end{array}\right]$
$\gamma=\frac{-3 \alpha}{5}, \beta=\frac{-2 \alpha}{5}$
$\alpha+\beta+\gamma=0$
$\alpha, \frac{-2 \alpha}{5}, \frac{-3 \alpha}{5}$
5, - 2, - 3 [Not unit vector]
6. Let $f(x)=\frac{\sin \pi x}{x^{2}}, x>0$.

Let $x_{1}<x_{2}<x_{3}<\ldots<x_{n}<\ldots$ be all the points of local maximum of f and $y_{1}<y_{2}<y_{3}<\ldots .<y_{n}<\ldots$ be all the points of local minimum of f.
Then which of the following options is/are correct ?
(1) $x_{1}<y_{1}$
(2) $x_{n} \in\left(2 n, 2 n+\frac{1}{2}\right)$ for every n
(3) $\left|x_{n}-y_{n}\right|>1$ for every n
(4) $x_{n+1}-x_{n}>2$ for every n

Sol. 1,3,4
$f^{\prime}(x)=\frac{2 x \cos \pi x\left(\frac{\pi x}{2}-\tan \pi x\right)}{x^{4}}$

For $f^{\prime}(x)$

हमारा विश्वास... ह एक विद्यार्यी है खुपास

7. Let $\mathrm{p}_{1}=1=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], \quad \mathrm{p}_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right], \quad \mathrm{p}_{3}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$,

$$
\begin{array}{cc}
\mathrm{p}_{4}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right], \quad \mathrm{p}_{5}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \quad \mathrm{p}_{6}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], \\
& \text { and } \mathrm{x}=\sum_{\mathrm{k}=1}^{6} \mathrm{P}_{\mathrm{k}}\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 0 & 2 \\
3 & 2 & 1
\end{array}\right] \mathrm{P}_{\mathrm{k}}^{\top}
\end{array}
$$

Where P_{K}^{\top} denotes the transpose of the matrix P_{K}. Then which of the following options is/are correct ?
(1) The sum of diagonal entries of X is 18
(2) If $X\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\alpha\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, then $\alpha=30$
(3) X is a symmetric matrix
(4) X - 30 I is an invertible matrix

Sol. 1,2, 3

Clearly $P_{1}=P^{\top}{ }^{1}=P^{1}{ }^{-1}$

$$
\begin{aligned}
& P_{2}=P_{2}^{\top}=P_{2}^{-1} \\
& P_{6}=P_{6}^{\top}=P_{6}^{-1}
\end{aligned}
$$

and $A^{1}=A$, where $A=\left[\begin{array}{lll}2 & 1 & 3 \\ 1 & 0 & 2 \\ 3 & 2 & 1\end{array}\right]$
Using formula $(A+B)^{1}=A^{1}+B^{1}$
$X^{1}=\left(P_{1} A P_{1}^{\top}+\ldots \ldots . P_{6} A P_{2}^{\top}\right)^{\top}+\ldots . P_{6} A^{\top} P_{6}^{\top}=x \quad \Rightarrow x$ is symmetric
Let $B=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
$X B=P_{1} A P_{1} T B+P_{2} A P_{2}^{\top} B+\ldots+P_{6} A P T_{6} B=P_{1} A B+P A B+\ldots+P_{6} A B$
$X B=\left(P_{1}+P_{2}+\ldots \ldots P_{6}\right)\left[\begin{array}{l}6 \\ 3 \\ 6\end{array}\right]$

हमारा विश्वास... हर एक विद्यार्यी है खुपास

$=\left[\begin{array}{l}6 \times 2+3 \times 2+6 \times 2 \\ 6 \times 2+3 \times 2+6 \times 2 \\ 6 \times 2+3 \times 2+6 \times 2\end{array}\right]=\left[\begin{array}{l}30 \\ 30 \\ 30\end{array}\right]=300 \Rightarrow \alpha=30$
Since $x\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=30\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
$\Rightarrow \quad(x-301) B=0$ has a non trivial solution $B=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
$\Rightarrow \quad|x-30|=0$
$x=P_{1} A P_{1}^{\top}+\ldots \ldots+P_{6}{A P^{\top}}_{6}$
$\operatorname{traco}(x)=t_{1}\left(P_{1} A P^{\top}{ }_{1}\right)+\ldots\left(P_{6} \mathrm{P}_{6}^{\top}\right)=(2+0+1)+\ldots+(2+0+1)=3 \times 6=18$
8. For

For $a \in R|a|>1$, let
$\lim _{n \rightarrow \infty}\left(\frac{1+\sqrt[3]{2}+\ldots+\sqrt[3]{n}}{n^{7 / 3}\left(\frac{1}{(a n+1)^{2}}+\frac{1}{(a n+2)^{2}}+\ldots+\frac{1}{(a n+n)^{2}}\right)}\right)=54$.
Then the possible value(s) of a is/are
(1) 7
(2) -6
(3) 8
(4) -9

Sol. 3,4
$\lim _{n \rightarrow \infty} \frac{n^{\frac{1}{3}} n n}{n^{2}}\left[\frac{1}{\left(a+\frac{1}{n}\right)^{2}}+\frac{1}{\left(a+\frac{2}{n}\right)^{2}}+\ldots \ldots+\frac{1}{\left(a+\frac{n}{n}\right)^{2}}\right]$
$\lim _{n \rightarrow \infty} \frac{\frac{1}{n} \sum_{r=1}^{n}\left(\frac{r}{n}\right)^{\frac{1}{3}}}{\frac{1}{n} \sum_{r=1}^{n}\left(\frac{1}{a+\frac{r}{n}}\right)^{2}} \Rightarrow \frac{\int_{0}^{1} x^{\frac{1}{3}} d x}{\int_{0}^{1} \frac{d x}{(a+x)^{2}}} \Rightarrow \frac{\frac{3}{4}\left(x^{\frac{4}{3}}\right)_{0}^{1}}{-\left(\frac{1}{a+x}\right)_{0}^{1}}=54$
$\Rightarrow \quad \frac{\frac{3}{4}}{\left(\frac{1}{a+1}-\frac{1}{a}\right)}=54 \Rightarrow \frac{3}{4} a(a+1)=54$
$a^{2}+a-72=0 \Rightarrow a=-9,8$

हमारा विश्वास... हर एक विद्यार्थी है खुपार

Section 2

- This section contains SIX (06) qeustions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme; Full Marks $:+3$ If ONLY the correct numerical value is entered Zero Marks : O in all other cases.

1. Let $\vec{a}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$ be two vectors. Consider a vector $\vec{c}=\alpha \vec{a}+\beta \vec{b} \cdot \alpha, \beta, \in \square$. If the projection of \vec{c} on the vector $(\vec{a}+\vec{b})$ is $3 \sqrt{2}$, then the minimum value of $(\vec{c}-(\vec{a} \times \vec{b})) \cdot \vec{c}$ equals \qquad
Sol. 18

$$
\begin{array}{ll}
\frac{\overline{\mathrm{C}} \cdot[\overline{\mathrm{a}}+\overline{\mathrm{b}}]}{|\overline{\mathrm{a}}+\overline{\mathrm{b}}|}=3 \sqrt{2} & \overline{\mathrm{C}}=\alpha(2,1,-1)+\beta(1,2,1) \\
=(2 \alpha+\beta, \alpha+2 \beta,-\alpha+\beta) \\
\frac{\overline{\mathrm{C}}-\overline{\mathrm{a}}+\overline{\mathrm{c}}-\overline{\mathrm{b}}}{|\overline{\mathrm{a}}+\overline{\mathrm{b}}|}=3 \sqrt{2} & \overline{\mathrm{C}} \cdot \overline{\mathrm{a}}=2(2 \alpha+\beta)+\alpha+2 \beta+\alpha-\beta=6 \alpha+3 \beta \\
\frac{(6 \alpha+3 \beta)+(6 \beta+3 \alpha)}{3 \sqrt{2}}=3 \sqrt{2} & \overline{\mathrm{c}} \cdot \overline{\mathrm{~b}}=2 \alpha+\beta+2 \alpha+4 \beta+\alpha+\beta=6 \beta+3 \alpha \\
(\alpha+\beta)=2 & |\overline{\mathrm{a}}+\overline{\mathrm{b}}|^{2}=6+6+23 \\
& |\overline{\mathrm{a}}+\overline{\mathrm{b}}|=\sqrt{18}=3 \sqrt{2}
\end{array}
$$

$$
\text { Now }(\bar{c}-(\bar{a} \times \bar{b})) \cdot \bar{c} \quad=|\bar{c}|^{2}-[\bar{a} \bar{b} \bar{c}] \quad \because[\bar{a} \bar{b} \bar{c}]=0
$$

$$
=(2 \alpha+\beta)^{2}+(\alpha+2 \beta)^{2}+(-\alpha+\beta)^{2}
$$

$$
=6 \alpha^{2}+6 \beta^{2}+6 \alpha \beta=6\left(\alpha^{2}+\beta^{2}+\alpha \beta\right)
$$

$$
\text { For minimum value } \quad=\alpha=\beta=1
$$

we get minimum value $=18$

हमारा विश्वास... हर एक विद्यार्थी है खुास

2. Suppose
$\operatorname{det}\left[\begin{array}{cc}\sum_{k=0}^{n} k & \sum_{k=0}^{n}{ }^{n} C_{k} k^{2} \\ \sum_{k=0}^{n}{ }^{n} C_{k} k & \sum_{k=0}^{n}{ }^{n} C_{k} 3{ }^{k}\end{array}\right]=0$
holds for some positive integer n. Then $\sum_{k=0}^{n} \frac{{ }^{n} C_{k}}{k+1}$ equals \qquad
Sol. 6.2

$$
\begin{aligned}
\sum_{k=0}^{n}\left(k^{2}-k+k\right)^{n} & G_{c}=\sum_{k=0}^{n}(k-1) k \frac{n}{k} \cdot \frac{n-1}{k-1}{ }^{n-2} G_{c-2}+\sum_{r=0}^{n} k \frac{n}{k}{ }^{n-1} C_{k-1} \\
& =n(n-1) \cdot 2^{n-2}+n 2^{n-1} \\
& =n \cdot 2^{n-2}[(n-1)+2] \\
& =n(n+1) 2^{n-2} \\
\sum_{k=0}^{n} k \frac{n}{k}{ }^{n-1} C_{n-1} & =n 2^{n-1} \\
\sum_{k=0}^{n} 3 k{ }^{n-1} C_{n-1} & ={ }^{n} C_{0}+3^{1}\left({ }^{n} C_{1}\right)+\left(3^{2}\right) n_{e}+\ldots+3^{n}\left({ }^{n} C_{n}\right)
\end{aligned}
$$

Now $\left|\begin{array}{cc}\frac{n(n+1)}{2} & n(n+1) 2^{n-2} \\ n 2^{n-1} & 4^{n}\end{array}\right|=0$

$$
\left|\begin{array}{cc}
2 & 2^{n} \\
n 2^{n-1} & 4^{n}
\end{array}\right|=0 \quad 2^{2 n+1}=n \cdot 2^{2 n-1}
$$

$=n=4$
$\sum_{\mathrm{k}=0}^{4} \frac{{ }^{4} \mathrm{C}_{1 \mathrm{c}}}{\mathrm{k}+1}=\frac{{ }^{4} \mathrm{C}_{0}}{1}+\frac{{ }^{4} \mathrm{C}_{1}}{2}+\frac{{ }^{4} \mathrm{C}_{2}}{3}+\frac{{ }^{4} \mathrm{C}_{3}}{4}+\frac{{ }^{4} \mathrm{C}_{4}}{5}$
$=1+2+2+1+1 / 5$
$=\frac{31}{5}$
$=6.20$
3. Let $|X|$ denote the number of elements in a set X, Let $S=\{1,2,3,4,5,6\}$ be a sample space, where each element is equally likely to occur. If A and B are independent events associated with S, then the number of ordered pairs (A, B) such that $1 \leq|B|<|A|$, equals \qquad

Sol. 422

Let No. of element in $A=\alpha \quad \alpha>\beta \geq 1$
No. of element in $B=\beta$
\& No. of elemens in $A \cap B=Z$

हमारा विश्वास... ह एक विद्यार्थी है खुास

$\because A \& B$ are independent events
then $P(A \cap B)=P(A) \cdot P(B)$

$$
\frac{z}{6}=\frac{\alpha}{6} \cdot \frac{\beta}{6} \Rightarrow 6 z=\alpha \cdot \beta
$$

Now Case I: if $z=1$
(i) $\alpha=6, \beta=1 \Rightarrow{ }^{6} \mathrm{C}_{6} \cdot{ }^{6} \mathrm{C}_{1}=6$
(ii) $\alpha=3, \beta=2 \Rightarrow{ }^{6} \mathrm{C}_{3} \cdot{ }^{3} \mathrm{C}_{1} \cdot{ }^{3} \mathrm{C}_{1}=180$

Case II: if $z=2$
(i) $\alpha=6, \beta=2 \Rightarrow{ }^{6} \mathrm{C}_{5} \cdot{ }^{6} \mathrm{C}_{2}=1.15=15$
(ii) $\alpha=4, \beta=3 \Rightarrow{ }^{6} \mathrm{C}_{4} \cdot{ }^{3} \mathrm{C}_{2} \cdot{ }^{2} \mathrm{C}_{1}=180$

Case III: if $z=3$
(i) $\alpha=6, \beta=3 \Rightarrow{ }^{6} \mathrm{C}_{6} \cdot{ }^{6} \mathrm{C}_{3}=1.20=20$

Case IV : if $z=4$
(i) $\alpha=6, \beta=4 \Rightarrow{ }^{6} \mathrm{C}_{6} \cdot{ }^{6} \mathrm{C}_{4}=1.15=15$

Case V : if $z=5$
(i) $\alpha=6, \beta=5 \Rightarrow{ }^{6} \mathrm{C}_{6} \cdot{ }^{6} \mathrm{C}_{5}=1.6=6$
$=422$
4. The value of the integral

$$
\int_{0}^{\pi / 2} \frac{3 \sqrt{\cos \theta}}{(\sqrt{\cos \theta}+\sqrt{\sin \theta})^{5}} d \theta
$$

equals
Sol. 0.5

$$
\mathrm{I}=\int_{0}^{\pi 2} \frac{3 \sqrt{\cos \theta}}{(\sqrt{\cos \theta+\sqrt{\sin \theta}})^{5}}
$$

King prop and add.
$2 \mathrm{I}=\int_{0}^{\pi 2} \frac{3}{(\sqrt{\cos \theta+\sqrt{\sin \theta}})^{4}}$
$\mathrm{I}=\frac{3}{2} \int_{0}^{\pi 2} \frac{3 \sec ^{2} \theta}{(\sqrt{1 \sqrt{\sin \theta}})^{4}}$
$=\quad \tan \theta=\mathrm{t}^{2}$
$=\sec ^{2} q d \theta=2 \tan$

हमारा विश्वास... ह एक विद्यार्थी है खुास

$$
\begin{aligned}
\mathrm{I} & =\frac{3}{2} \int_{0}^{\infty} \frac{2+\mathrm{dt}}{(1+1)^{4}} \\
& =3 \int_{0}^{\infty} \frac{\mathrm{t}+1-1}{(\mathrm{t}+1)^{4}} \mathrm{dt} \\
& =3\left[\int_{0}^{\infty}\left[\frac{1}{(\mathrm{t}+1)^{3}}-\frac{1}{(\mathrm{t}+1)^{4}}\right]\right] \mathrm{dt} \\
& =\left[\frac{-1}{2(\mathrm{t}+1)^{2}}+\frac{1}{3} \frac{(\mathrm{t}+1)^{3}}{}\right]_{0}^{\infty} \\
& =3\left[0-\left(-\frac{1}{2}+\frac{1}{3}\right)\right] \\
& =3 / 6=0.5
\end{aligned}
$$

5. Five persons A, B, C, D and E are seated in a circular arrangement. If each of them is given a hat of one of the three colours red, blue and green, then the number of ways of distributing the hats such that the persons seated in adjacent seats get different coloured hats is \qquad

Sol. (30.00)

Maximum number of hats used the same colour are 2 . They cannot be 3 otherwise atleast 2 hats of same colour are consecutive.
Now, Let hats used are R, R, G, G, B
(Which can be selected in 3 ways. It can be RGGBB or RRGBB also)
Now, numbers of ways of disturbing blue hat (single one) in 5 person equal to 5
Let blue hat goes to person A.
Now, either position B \& D are filled by green hats and C \& E are filled by Rads hats or B \& D are filled by Red hats and C \& E are filled by Green hats
$\Rightarrow 2$ ways are possible
Hence total number of ways $=3 \times 5 \times 2=30$ ways
6. The value of

$$
\operatorname{Sec}^{-1}\left(\frac{1}{4} \sum_{k=0}^{10} \operatorname{Sec}\left(\frac{7 \pi}{12}+\frac{k \pi}{2}\right) \operatorname{Sec}\left(\frac{7 \pi}{12}+\frac{(k+1) \pi}{2}\right)\right)
$$

in the interval $\left[-\frac{\pi}{4}, \frac{3 \pi}{4}\right]$ equals \qquad
Sol. 0
$\operatorname{Sec}^{-1}\left(\frac{1}{4} \sum_{\mathrm{k}=0}^{10} \frac{1}{\cos \left(\frac{7 \pi}{12}+\frac{\mathrm{k} \pi}{2}\right) \cos \left(\frac{7 \pi}{12}+\frac{(\mathrm{k}+1) \pi}{2}\right)}\right)$

हमारा विश्वास... हर एक विद्यार्थी है खुास

$\operatorname{Sec}^{-1}\left(\frac{1}{4} \sum_{\mathrm{k}=0}^{10} \frac{\sin \left(\frac{7 \pi}{12}+\frac{(\mathrm{k}+1) \pi}{2}\right)-\left(\frac{7 \pi}{12}+\frac{\mathrm{k} \pi}{2}\right)}{\cos \left(\frac{7 \pi}{12}+\frac{\mathrm{k} \pi}{2}\right) \cos \left(\frac{7 \pi}{12}+(\mathrm{k}+1) \frac{\pi}{2}\right)}\right)$
$\operatorname{Sec}^{-1}\left(\frac{1}{4} \sum_{\mathrm{k}=0}^{10}\left(\tan \left(\frac{7 \pi}{12}+(\mathrm{k}+1) \frac{\pi}{2}\right)-\tan \left(\frac{7 \pi}{2}+\mathrm{k} \frac{\pi}{2}\right)\right)\right)$
$\operatorname{Sec}^{-1}\left(\frac{1}{4} \sum_{\mathrm{k}=0}^{10}\left(\tan \left(\frac{7 \pi}{12}+\frac{\pi}{2}\right)\right)+\left(\tan \left(\frac{7 \pi}{12}+\frac{2 \pi}{2}\right)\right)\right)-\tan \left(\frac{7 \pi}{12}+\frac{\pi}{2}\right)$

$$
+\ldots+\left(\tan \left(\frac{7 \pi}{12}+\frac{11 \pi}{2}\right)\right)-\tan \left(\frac{7 \pi}{2}+\frac{10 \pi}{2}\right)
$$

$\operatorname{Sec}^{-1}\left(\frac{1}{4}\left(\tan \frac{13 \pi}{12}-\tan \frac{7 \pi}{12}\right)\right)$
$\operatorname{Sec}^{-1}\left(\frac{1}{4}\left(\tan \left(\frac{\pi}{12}\right)-\tan \left(\frac{7 \pi}{12}\right)\right)\right)$
$\operatorname{Sec}^{-1}\left(\frac{1}{4}((2-\sqrt{3})+12+\sqrt{3})\right)$
$\operatorname{Sec}^{-1}(1)$
$=0.00$

Section 3

- This section contains TWO (02) List -Match sets
- Each List Match set has TWO (02) Multiple Choice Questions.
- Each List Match set has two lists. List I and List II
- List I has Four entries (I), (II),(III) and (IV) and List II has Six entries (P),(Q)(R),(S),(T) and (U)
- Four options are given in each multiple choice question based on List I and List II and only one of these four options satisfies the condition asked in the multiple choice question.
- Answer to each question will be evaluated according to the following marking scheme.

Full marks $\quad+3$ If ONLY the option corresponding to the correct combination is chosen
Zero Marks $\quad 0$ If none of the options is chosen (i.e., the question is unanswered)
Negative marks $\quad-1$ in all other cases.
Anser the following by appropriately matching the lists based on the information given in the paragraph

1. Let $f(x)=\sin (\pi \cos x)$ and $g(x)=\cos (2 \pi \sin x)$ be two functions defined for $x>0$. Define the following sets whose elements are written in the increasing order:

$$
\begin{array}{ll}
X=\{x: f(x)=0\}, & Y=\left\{x: f^{\prime}(x)=0\right\} \\
Z=\{x: g(x)=0\}, & W=\left\{x: g^{\prime}(x)=0\right\}
\end{array}
$$

List -I contains the sets X, Y, Z and W. List-II contains some information regarding these sets.

हमारा विश्वास... ह एक विद्यार्थी है खुास

List-I

(I) X
(II) Y
(III) Z
(IV) W

List-II

$(\mathrm{P}) \supseteq\left\{\frac{\pi}{2}, \frac{3 \pi}{2}, 4 \pi, 7 \pi\right\}$
(Q) an arithmetic progression
(R) NOT an arithmetic progression
$(S) \supseteq\left\{\frac{\pi}{6}, \frac{7 \pi}{6}, \frac{13 \pi}{6}\right\}$
$(\mathrm{T}) \supseteq\left\{\frac{\pi}{3}, \frac{2 \pi}{3}, \pi\right\}$
$(\mathrm{U}) \supseteq\left\{\frac{\pi}{6}, \frac{3 \pi}{4}\right\}$

Which of the following is the only CORRECT combination ?
(1) (III), (P), (Q), (U)
(2) (IV), (P), (R), (S)
(3) (III), (R), (U)
(4) (IV), (Q), (T)

Sol. 2
2. Answer the following appropriately matching the list based on the information given in the paragraph.
Let $f(x)=\sin (\pi \cos x)$ and $g(x)=\cos (2 \pi \sin x)$ be two functions defined for $x>0$. Define the following sets whose elements are written in the increasing order.

$$
\begin{array}{ll}
X=\{x: f(x)=0\}, & Y=\left\{x: f^{\prime}(x)=0\right\} \\
Z=\{x: g(x)=0\}, & W=\left\{x: g^{\prime}(x)=0\right\}
\end{array}
$$

List I contains the sets X, Y, Z and W. List II contains some information regarding these sets.

List I

(I) X
(II) Y
(III) Z
(IV) W

List II

(P) $\supseteq\left\{\frac{\pi}{2}, \frac{3 \pi}{2}, 4 \pi, 7 \pi\right\}$
(Q) an arithemetic progression
(R) NOT an arithemetic progression
(S) $\supseteq\left\{\frac{\pi}{6}, \frac{7 \pi}{6}, \frac{13 \pi}{6}\right\}$
(T) $\supseteq\left\{\frac{\pi}{3}, \frac{2 \pi}{3}, \pi\right\}$
(U) $\supseteq\left\{\frac{\pi}{6}, \frac{3 \pi}{4}\right\}$

Which of the following is the only CORRECT combination ?
(1) (I), (Q), (U)
(2) (II),(Q), (T)
(3) (I), (P), (R)
(4) (II), (R), (S)

Sol. 2

$f(x)=0 \Rightarrow \sin (\pi \cos x)=0$
$\Rightarrow \pi \cos x=\mathrm{n} \pi \Rightarrow \cos \mathrm{x}=\mathrm{n}$

हमारा विश्वास... हर एक विद्यार्यी है खुपास

$\Rightarrow \cos x=-1,0,1 \quad \Rightarrow X=\left(n \pi,(2 n+1) \frac{\pi}{2}\right)$
$=\left(n \frac{\pi}{2}, n\right)$
$f^{\prime}(x)=0 \Rightarrow \cos (\pi \cos x)(-\pi \sin x)=0$
$\Rightarrow \pi \cos \mathrm{x}=(2 \mathrm{n}+1) \frac{\pi}{2}$ or $\mathrm{x}=\mathrm{n} \pi$
$\left.\Rightarrow \cos x=-1,0,1 \quad \Rightarrow x=\left(n \pi(2 n+1) \frac{\pi}{2}\right)=\left(n \frac{\pi}{2}, n \in\right)\right)$
$f^{\prime}(x)=0 \Rightarrow \cos (\pi \cos x)(-\pi \sin x)=0$
$\Rightarrow \cos x=n+\frac{1}{2}$ or $x n \pi$
$\Rightarrow \cos x= \pm \frac{1}{2}$ of $x=n \pi$
$\Rightarrow \mathrm{y}=\left\{\mathrm{an} \pi=\frac{\pi}{3} 2 \pi \mathrm{r}=\frac{2 \pi}{3}, \mathrm{n} \pi \mathrm{n}\right\}$
$g(x)=0 \quad \Rightarrow \cos (2 x \sin x)=0 \quad \Rightarrow 2 \pi \sin x=(2 n+1) \frac{\pi}{2}$
$\Rightarrow \sin x=\frac{2 n+1}{2}-\frac{1}{2}+\frac{3}{2}$
$\Rightarrow \cos x=n+\frac{1}{2}$ or $x n \pi \cos x= \pm \frac{1}{2}$ or $x=n \pi$
$\Rightarrow \mathrm{y}=\left\{2 \mathrm{n} \pi \pm \frac{\pi}{3}, 2 \mathrm{n} \pi \pm \frac{2 \pi}{3}, \mathrm{n} \pi, \mathrm{n} \in 1\right\}$
$g(x)=0 \quad \Rightarrow \cos (2 \pi \sin x)=0$
$\Rightarrow 2 \pi \sin x=(2 n+1) \frac{\pi}{2} \quad \Rightarrow \sin x=\frac{2 n+1}{4}= \pm \frac{1}{4} \pm \frac{3}{4}$
$\Rightarrow Z=\left\{n \pi \pm \sin 1 \frac{1}{4}, \mathrm{n} \pi \pm \sin 1 \frac{3}{4}, \mathrm{n} \in 1\right\}$
$g^{\prime}(x)=0 \quad \Rightarrow-\sin (2 \pi \sin x)(2 \pi \cos x)=0$
$\Rightarrow 2 \pi \sin x=n \pi$ or $x=(2 n+1) \frac{\pi}{2} \Rightarrow \sin x=\frac{n}{2}=0, \pm \frac{1}{2}, \pm 1$ or $x=(2 n+1) \frac{\pi}{2}$
$\Rightarrow W=\left\{n \pi,(2 n+1) \frac{\pi}{2}, n p \frac{\pi}{6}, n \in 1\right\}$

हमारा विश्वास... हर एक विद्यार्थी है ख़ास

3. Answer the following by appropriately matching the list based on the information given in the paragraph.
Let the circles $C_{1}: x^{2}+y^{2}=9$ and $C_{2}:(x-3)^{2}+(y-4)^{2}=16$, intersect at the points X and Y.
Suppose that another circle $C_{3}:(x-h)^{2}+(y-k)^{2}=r^{2}$ satisfies the following conditions
(i) centre of C_{3} is collinear with the centres of C_{1} and C_{2}.
(ii) C_{1} and C_{2} both lie inside C_{3}, and
(iii) C_{3} touches C_{1} at M and C_{2} at N

Let the line through X and Y intersect C_{3} at Z and W, and let a common tangent of C_{1} and C_{3} be a tangent to the parabola $x^{2}=8 \alpha y$.
There are some expressions given in the List I whose values are given in List II below :

List I

(I) $\quad 2 h+k$
(II) $\frac{\text { Length of } \mathrm{ZW}}{\text { Length of } \mathrm{XY}}$
(IV)
$\frac{\text { Area of triangle MZN }}{\text { Area of triangle ZMW }}$ α

List II

(P) 6
(Q) $\sqrt{6}$
(R) $\frac{5}{4}$
(S) $\frac{21}{5}$
(T) $2 \sqrt{6}$
(U) $\frac{10}{3}$

Which of the following is the only CORRECT combination ?
(1) (II), (T)
(2) (I), (U)
(3) (I), (S)
(4) (II), (Q)

Sol. 4

4. Answer the following by appropriately matching the list based on the information given in the paragraph.
Let the circles $C_{1}: x^{2}+y^{2}=9$ and $C_{2}:(x-3)^{2}+(y-4)^{2}=16$, intersect at the points X and Y.
Suppose that another circle $C_{3}:(x-h)^{2}+(y-k)^{2}=r^{2}$ satisfies the following conditions
(i) centre of C_{3} is collinear with the centres of C_{1} and C_{2}.
(ii) C_{1} and C_{2} both lie inside C_{3}, and
(iii) C_{3} touches C_{1} at M and C_{2} at N

Let the line through X and Y intersect C_{3} at Z and W, and let a common tangent of C_{1} and C_{3} be a tangent to the parabola $x^{2}=8 \alpha y$.
There are some expressions given in the List I whose values are given in List II below :

List I

(I) $\quad 2 h+k$
(II) $\frac{\text { Length of } \mathrm{ZW}}{\text { Length of } X Y}$
(III)
$\frac{\text { Area of triangle MZN }}{\text { Area of triangle ZMW }}$
(IV) α
α
(P) 6
(Q) $\sqrt{6}$

List II

)
(R) $\frac{5}{4}$
(S) $\frac{21}{5}$
(T) $2 \sqrt{6}$
(U) $\frac{10}{3}$

हमारा विश्वास... हर एक विद्यार्यी है खुपास

Which of the following is the only CORRECT combination ?
(1) (IV), (S)
(2) (IV), (U)
(3) (I), (P)
(4) (III), (R)

Sol. 1

(i) $2 r=M N=3+\sqrt{3^{2}+4^{2}}+4=12 \Rightarrow r=6$

Contre C of circle C_{3} lies on $y=\frac{4}{3} x$
Let $C\left(h, \frac{4}{3} h\right)$
$O C=M C=O M=\frac{12}{2}-3=3$
$\therefore \quad \sqrt{h^{2}+\frac{16}{9} h^{2}}=3 \quad \Rightarrow \frac{5 h}{3}=3 \Rightarrow \quad h=\frac{9}{5}$
$K=\frac{4}{3} h=\frac{12^{`}}{3}$
$\therefore \quad 2 \mathrm{~h}+\mathrm{K}=\frac{18}{5}+\frac{12}{5}=6$
(ii) Equation of line ZW
$C_{1}-C_{2}=0 \quad \Rightarrow 3 x+4 y=9$
Distance of ZW from $(0,0)$
$\frac{|-9|}{\sqrt{3^{2}+4^{2}}}=\frac{9}{5}$
Length of $X Y=2 \sqrt{3^{2}-\left(\sqrt{\frac{9}{5}}\right)^{2}}=\frac{24}{5}$
Distance of ZW from C $\quad \Rightarrow \quad \frac{\left|\frac{3 \times 9}{5}+4 \frac{12}{5}-9\right|}{\sqrt{3^{2}+4^{2}}}=\frac{24 \sqrt{6}}{5}$

$$
\therefore \quad \frac{\text { Length of } Z W}{\text { length of } X Y}=\sqrt{6}
$$

हमारा विश्वास... हर एक विद्यार्यी है खुपास

(iii) Area of $\triangle M Z N=\frac{1}{2} \mathrm{MN}\left(\frac{1}{2} \mathrm{ZW}\right)=\frac{72 \sqrt{6}}{5}$

Area of $\triangle Z M W=\frac{1}{2} Z W(O M+O P)=\frac{1}{2} \frac{24 \sqrt{6}}{5}$
$\left(3+\frac{9}{5}\right)=\frac{288 \sqrt{6}}{25} \quad \therefore \quad \frac{\text { Area of } \triangle M Z N}{\text { Area of } \triangle Z M W}=\frac{5}{4}$
(iv) Slop of tangent to C_{1} at $M=\frac{-1}{4 / 3}=-\frac{3}{4}$
\therefore Equation of tangent $y=m x-3 \sqrt{1+m^{2}}$
$y=-\frac{3}{4} \times-3 \sqrt{1+\frac{9}{16}}$
$y=\frac{-3 x}{4}-\frac{15}{4} \Rightarrow \quad x=-\frac{4 y}{3}-3 \ldots$. (i)
tangent to $x^{2}=4(2 \alpha) y$ is
$x=m y+\frac{2 \alpha}{m}$
Compare (i) and (ii)
$m=-\frac{4}{3}$ and $\frac{2 \alpha}{m}=-5 \Rightarrow \alpha=\frac{10}{3}$

Based on JEE Advanced'19

MARKS	FEE (After Scholarship)
140 above	Drona Residential Program Free
120 to 139	₹ 0
100 to 120	₹ 14,500
90 to 99	₹ 29,000
80 to 89	₹ 43,500
69 to 79	₹ 98,000
40 to 69	₹ 87,000

*Scholarship Applicable at Kota Center Only

Based on JEE Main'19

	JEE Main Percentile
99 \& Above	
97.5 To 99	
97 To 97.5	
96.5 To 97	
96 To 96.5	
95.5 To 96	
95 To 95.5	
93 To 95	
90 To 93	
85 To 90	
80 To 85	
75 To 80	

English	Hindi
Fees (After Scholarship)	
Drona Residential Program Free	
₹ 0	₹ 0
₹ 14,500	₹ 14,500
₹ 29,000	₹ 29,000
₹ 58,000	₹ 58,000
₹ 65,250	₹ 65,250
₹ 72,500	₹ 72,500
₹ 87,000	₹ 87,000
₹ $1,01,500$	₹ 94,250
₹ 1,08,750	₹ $1,01,500$
₹ 1,16,000	₹ $1,08,750$
₹ 1,30,500	₹ $1,23,250$

JEE MAIN Special Batch for Class 14th Repeaters

Flat 50\% Scholarship

