हमारा विश्वास... हर एक विद्यार्थी है ख़ास

PAPER WITH SOLUTION

JE:

Advanced 2019

lois

MATHEMATICS PAPER - 1

$4 \times$

IIT/NIT | NEET / AIIMS | NTSE/IJSO/OLYMPIADS

कोटा का रिपिटर्स (12th पास) का सर्वश्रेष्ठ रिजल्ट देने वाला संसथान

Motíon

CRITERIA FOR DIRECT ADMISSION IN STAR BATCHES

V STAR BATCH XII Pass (JEE M+A) ELIGIBILITY JEE Main'19 \%tile > 98\%tile JEE Advanced'19 Rank (Gen.) < 15,000

J STAR BATCH XII Pass (NEET/AIIMS)

ELIGIBILITY

NEET'19 Score > 450 Marks

AIIMS'19 \%tile > 98\%tile

I STAR BAICH XI Moving (NEET/AIIMS) ELIMIBILITY

 NTSE Stage-1 Qualified

 NTSE Stage-1 Qualified or NTSE Score > 160

 or NTSE Score > 160}

100 marks in Science or Maths in Board Exam

P STAR BATCH XI moving (JEE M+A) ELIMIBILITY

$$
\begin{aligned}
& \text { NTSE Stage-1 Qualified } \\
& \text { or NTSE Score > } 160
\end{aligned}
$$

Maths in Board Exam
 100 marks in Science or

Scholarship Criteria

JEE Main Percentile	SCHOLARSHIP+ STIPEND	JEE Advanced Rank	SCHOLARSHIP+ STIPEND
98-99	100\%	10000-20000	100\%
Above 99	100\% + ₹ 5000/ month	Under 10000	100\% + ₹ 5000/month
NEET 2019 Marks	$\begin{aligned} & \text { SCHOLARSHIP+ } \\ & \text { STIPEND } \end{aligned}$	NTSE STAGE-1 2019 Marks	$\begin{aligned} & \text { SCHOLARSHIP+ } \\ & \text { STIPEND } \end{aligned}$
450	100\%	160-170	100\% + ₹ 2000/month
530-550	100\% + ₹ 2000/month		100\% + ₹ 4000/month
550-560	100\% + ₹ 4000/month		4000/
560	100\% + ₹ 5000/month	180+	100\% + ₹ 5000/month

FEATURES:

- Batch will be taught by NV Sir \& HOD's Only.
- Weekly Quizes apart from regular test.
- Under direct guidance of NV Sir.
- Residential campus facility available.
- 20 CBT (Computer Based Test) for better practice.
- Permanent academic coordinator for personal academic requirement.
- Small batch with only selected student.
- All the top brands material will be discussed.

हमारा विश्वास... हू फ्व विद्यार्यी है खुलास

MATHS [JEE ADVANCED - 2019] PAPER - 1

SECTION -1 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options ONLY ONE of these four options is correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme. Full Marks : +3 If ONLY the correct option is chosen. Zero Marks : 0 If none of the options is choosen (i.e. the question is unanswered) Negative marks : -1 In all other cases

1. A line $y=m x+1$ intersects the circle $(x-3)^{2}+(y+2)^{2}=25$ at the points P and Q. If the midpoint of the line segment $P Q$ has x - coordinate $\frac{-3}{5}$, then which one of the following options is correct ?
(1) $-3 \leq m<-1$
(2) $6 \leq m<8$
(3) $4 \leq m<6$
(4) $2 \leq m<4$

Sol. 4

$m_{A B} \cdot m_{c m}=-1$
$\Rightarrow m \cdot\left(\frac{1-\frac{3}{5} m+2}{-\frac{3}{5}-3}\right)=-1$
$\Rightarrow m\left(\frac{15-3 m}{-18}\right)=-1$
$\Rightarrow 15 m-3 m^{2}-18=0$
$\mathrm{m}^{2}-5 \mathrm{~m}+6=0$
$\mathrm{m}=2, \mathrm{~m}=3 \Rightarrow 2 \leq \mathrm{m}<4$
2. Let $M=\left[\begin{array}{cc}\sin ^{4} \theta & -1-\sin ^{2} \theta \\ 1+\cos ^{2} \theta & \cos ^{4} \theta\end{array}\right]=\alpha I+\beta M^{-1}$
where $\alpha=\alpha(\theta)$ and $\beta=\beta(\theta)$ are real numbers, and I is the 2×2 identity matrix. If
α^{*} is the minimum of set $\{\alpha(\theta): \theta \in[0,2 \pi)\}$ and
β^{*} is the minimum of the set $\{\beta(\theta): \theta \in[0,2 \pi)\}$
then the value of $\alpha^{*}+\beta^{*}$ is
(1) $\frac{-29}{16}$
(2) $-\frac{37}{16}$
(3) $-\frac{17}{16}$
(4) $-\frac{31}{16}$

Sol. 1
$M=\left[\begin{array}{cc}\sin ^{4} \theta & -1-\sin ^{2} \theta \\ 1+\cos ^{2} \theta & \cos ^{4} \theta\end{array}\right]=\alpha I+\beta M^{-1}$
$M=\alpha I+\beta M^{-1}$

हमारा विश्वास... हर एक विद्यार्थी है खुगास

$M^{2}=\alpha M+\beta I$
$\left[\begin{array}{cc}\sin ^{4} \theta & -1-\sin ^{2} \theta \\ 1+\cos ^{2} \theta & \cos ^{4} \theta\end{array}\right]\left[\begin{array}{cc}\sin ^{4} \theta & -1-\sin ^{2} \theta \\ 1+\cos ^{2} \theta & \cos ^{4} \theta\end{array}\right]=\beta\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\alpha\left[\begin{array}{cc}\sin ^{4} \theta & -1-\sin ^{2} \theta \\ 1+\cos ^{2} \theta & \cos ^{4} \theta\end{array}\right]$
$\sin ^{8} \theta-1-\sin ^{2} \theta-\cos ^{2} \theta-\cos ^{2} \theta \sin ^{2} \theta=\beta+\alpha \sin ^{4} \theta$
$\sin ^{8} \theta-2-\cos ^{2} \theta \sin ^{2} \theta=\beta+\alpha \sin ^{4} \theta \quad \ldots \ldots(1)$
$\sin ^{2} \theta+\cos ^{2} \theta \sin ^{4} \theta+\cos ^{4} \theta+\cos ^{6} \theta=\alpha\left(1+\cos ^{2} \theta\right)$
$\alpha=\frac{\sin ^{4} \theta\left(1+\cos ^{2} \theta\right)+\cos ^{4} \theta\left(1+\cos ^{2} \theta\right)}{\left(1+\cos ^{2} \theta\right)}$
$\alpha=\sin ^{4} \theta+\cos ^{4} \theta==1-\frac{1}{2} \sin ^{2} 2 \theta$
$\alpha_{\text {min }}=1-\frac{1}{2}=-\frac{1}{2}$
for equation (1)
$\sin ^{8} \theta-2-\cos ^{2} \theta \sin ^{2} \theta-\alpha \sin ^{4} \theta=\beta$
$\beta=\sin ^{2} \theta-2-\sin ^{2} \theta \cos ^{2} \theta-\sin ^{4} \theta\left(\sin ^{4} \theta+\cos ^{4} \theta\right)$
$\beta=-2-\sin ^{2} \theta \cos ^{2} \theta-\sin ^{4} \theta \cos ^{4} \theta$
$\beta=-2-\frac{1}{4} \sin ^{2} 2 \theta-\frac{1}{16}(\sin 2 \theta)^{4}$
$\beta=-2-\frac{1}{16}\left\{(\sin 2 \theta)^{4}+4\left(\sin ^{2} 2 \theta\right)+4\right\}+\frac{1}{4}$
$\beta=-\frac{7}{4}-\frac{1}{16}\{\sin 2 \theta+2\}^{2}$
$\beta=-\frac{7}{4}-\frac{1}{16} .9=\frac{-7}{4}-\frac{9}{16}=\frac{-28-9}{16}=-\frac{37}{16}$
$\alpha^{*}{ }_{\text {min }}+\beta^{*} \min =\frac{-37+8}{16}=\frac{-29}{16}$
3. Let S be the set of all complex numbers z satsfying $|z-2+i| \geq \sqrt{5}$. If the complex number z_{0} is such that $\frac{1}{\left|z_{0}-1\right|}$ is the maximum of the set $\left\{\frac{1}{|z-1|}: z \in S\right\}$, then the principal argument of $\frac{4-z_{0}-\bar{z}_{0}}{z_{0}-\bar{z}_{0}+2 i}$ is
(1) $\frac{\pi}{2}$
(2) $\frac{3 \pi}{4}$
(3) $\frac{\pi}{4}$
(4) $-\frac{\pi}{2}$

Sol. 4
$|z-2+i| \geq \sqrt{5}$ for max of $\frac{1}{\left|z_{0}-1\right|}$
$\Rightarrow \min \left|z_{0}-1\right|$

हमारा विश्वास... हर एक विद्यार्थी है खुपास

$\mathrm{m}_{\mathrm{CA}}=\tan \theta==\frac{1}{-1}=-1$
Now use parametric coordinate $\theta=135^{\circ}$

$P\left(z_{0}\right)=\left\{\left(2+\sqrt{5} \cdot\left(\frac{-1}{\sqrt{2}}\right)\right),\left(-1+\sqrt{5}\left(\frac{1}{\sqrt{2}}\right)\right)\right\}$
$\Rightarrow \mathrm{z}_{0}=\left(2-\sqrt{\frac{5}{2}},-1+\sqrt{\frac{5}{2}}\right)$
$\Rightarrow \arg \left(\frac{4-\left(z_{0}+\bar{z}_{0}\right)}{\left(z_{0}-\bar{z}_{0}\right)+2 i}\right) \Rightarrow \arg \left(\frac{4-\left(2\left\{2-\sqrt{\frac{5}{2}}\right\}\right)}{2 i+2\left(-1+\sqrt{\frac{5}{2}}\right) i}\right)$
$\Rightarrow \arg \left(\frac{\sqrt{10}}{i \sqrt{10}}\right) \quad \Rightarrow \arg \left(\frac{1}{i}\right)$
$\Rightarrow \arg (-\mathrm{i})=\frac{-\pi}{2}$
4. The area of region $\left\{(x, y): x y \leq 8,1 \leq y \leq x^{2}\right\}$ is
(1) $16 \log _{e} 2-\frac{14}{3}$
(2) $8 \log _{e} 2-\frac{7}{3}$
(3) $8 \log _{e} 2-\frac{14}{3}$
(4) $16 \log _{e} 2-6$

Sol. 1

$$
x y \leq 8 \quad \& 1 \leq y \leq x^{2}
$$

हमारा विश्वास... हर एक विद्यार्थी है खुगास

$A=\int_{1}^{2}\left(x^{2}-1\right) d x+\int_{2}^{8}\left(\frac{8}{x}-1\right) d x$
$A=\left.\frac{x^{3}}{3}\right|_{1} ^{2}+\left.8 \ln x\right|_{2} ^{8}-1-6$
$A=\left(\frac{8}{3}-\frac{1}{3}\right)+8(\ln 8-\ln 2)-7$
$A=\frac{7}{3}-7+16 \ln 2$
$A=16 \ln 2-\frac{14}{3}$

SECTION -2 (Maximum Marks: 12)

- This section contains EIGHT (08) questions.
- Each question has FOUR options ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme.

Full marks $\quad:+4$ If only (all) the correct option(s) is (are) chosen;
Partial Marks $\quad:+3$ If all the four options are correct but ONLY three options are chosen and both of which are correct
Partial Marks $\quad:+1$ If two or more options are correct but ONLY one option is chosen and it is a correct option.
Zero Marks : 0 If two or more options is chosen (i.e. the question is unanswered) Negative Marks : -1 in all other cases

- For example, in a question, if $(A),(B)$ and (D) are the ONLY three options corresponding to correct answer, then
choosing ONLY (A), (B) and (D) will get +4 marks
choosing ONLY (A) and (B) will get +2 marks

हमारा विश्वास... ह एक विद्यार्थी है खुवास

choosing ONLY (A) and (D) will get +2 marks choosing ONLY (B) and (D) will get +2 marks choosing ONLY (A) will get +1 mark choosing ONLY (B) will get +1 mark choosing ONLY (D) will get +1 mark choosing no option (i.e., the question is unanswered) will get 0 marks; and choosing any other combination of options will get -1 mark

1. Let Γ denotes a curve $y=y(x)$ which is in the first quadrant and let the point $(1,0)$ lie on it. Let the tangent to Γ at a point P intersect the y - axis at Y_{p}. If $P Y_{p}$ has length 1 for each point P on Γ, then Which of the following options is/are correct ?
(1) $x y^{\prime}-\sqrt{1-x^{2}}=0$
(2) $y=-\log _{e}\left(\frac{1+\sqrt{1-x^{2}}}{x}\right)+\sqrt{1-x^{2}}$
(3) $x y^{\prime}+\sqrt{1-x^{2}}=0$
(4) $y=\log _{e}\left(\frac{1+\sqrt{1-x^{2}}}{x}\right)-\sqrt{1-x^{2}}$

Sol. 3,4

Equation of Tangent at P
$Y-y=\frac{d y}{d x}(X-x)$
For $Y_{p} \Rightarrow(X=0)$
$Y_{p}=y-x \frac{d y}{d x}$
distance $Y_{p} P=1$
$x^{2}+\left(y-y+x \frac{d y}{d x}\right)^{2}=1$

हमारा विश्वास... हर एक विद्यार्थी है खुगास

$x^{2}\left(1+\left(\frac{d y}{d x}\right)^{2}\right)=1$
$\left(\frac{d y}{d x}\right)^{2}=\frac{1}{x^{2}}-1$
$\frac{d y}{d x}= \pm \frac{\sqrt{1-x^{2}}}{x} \rightarrow$ option 1 and 3
$\int d y= \pm \int \frac{\sqrt{1-x^{2}}}{x} d x$
$x=\sin \theta$
$y= \pm \int \frac{\cos \theta}{\sin \theta} \cos \theta d \theta$
$y= \pm \int \frac{1-\sin ^{2} \theta}{\sin \theta} d \theta$
$y= \pm \int(\operatorname{cosec} \theta-\sin \theta) d \theta$
$y= \pm(\ln |\operatorname{cosec} \theta+\cot \theta|+\cos \theta)+C$
$y= \pm\left(\ln \left|\frac{1}{x}-\frac{\sqrt{1-x^{2}}}{x}\right|+\sqrt{1-x^{2}}\right)+C$
P as $(1,0) \Rightarrow c=0$
$y= \pm\left(\ln \left(\frac{1+\sqrt{1-x^{2}}}{x}\right)+\sqrt{1-x^{2}}\right) \rightarrow$ option (2), (4)
2. Define the collections $\left\{E_{1}, E_{2}, E_{3} \ldots \ldots\right\}$ of ellipse and $\left\{R_{1}, R_{2}, R_{3} \ldots ..\right\}$ of rectangles as follows:
$E_{1}: \frac{x^{2}}{9}+\frac{y^{2}}{4}=1 ;$
R_{1} : rectangle of largest area, with sides parallel to the axes, inscribed in E_{1};
E_{n} : ellipse $\frac{x^{2}}{a_{n}^{2}}+\frac{y^{2}}{b_{n}^{2}}=1$ of largest area inscribed in $R_{n-1}, n>1$;
R_{n} : rectangle of largest area, with sides parallel to the axes, inscribed in $E_{n}, n>1$
Then which of the following options is/are correct?
(1)The eccentricities of E_{18} and E_{19} are NOT equal
(2) The distance of a focus from the centre in E_{9} is $\frac{\sqrt{5}}{32}$

हमारा विश्वास... ह एक विद्यार्थी है खुवास

(3) $\sum_{n=1}^{N}\left(\right.$ area of $\left.R_{n}\right)<24$, for each positive integer N
(4) The length of latus rectum of E_{9} is $\frac{1}{6}$
2. (3),(4)

$E_{1} \Rightarrow \frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
$\mathrm{I}=6 \cos \theta$
$b=4 \sin \theta$
Area $=12 \times \sin 2 \theta$
$A_{\text {max }}=12$
$\sin 2 \theta=1$
$2 \theta=\frac{\pi}{2}$
$\theta=\frac{\pi}{4}$
$E_{2}: a=\frac{3}{\sqrt{2}} ; b=\frac{2}{\sqrt{2}} ; a=3 ; r=\frac{1}{\sqrt{2}} ; b=2 ; r=\frac{1}{\sqrt{2}}$
(i) $e^{2}=1-\frac{b^{2}}{a^{2}}$ eccentricities of all ellipse will be equal
(ii) for $E_{9} ; e=\frac{\sqrt{5}}{3}$ and $a=3 \times\left(\frac{1}{\sqrt{2}}\right)^{8}$
\therefore distance of focus from centre

हमारा विश्वास... हर एक विद्यार्थी है खुास

$=$ ae $=\frac{3}{16} \times \frac{\sqrt{5}}{3}=\frac{\sqrt{5}}{16}$
(iii) sum of area of rectangles $=12+6+3+\ldots$.
$A=\frac{12}{1-\frac{1}{2}}=24$
(iv) L.R. $=\frac{2 b^{2}}{a}=\frac{2 \times\left(2 \times \frac{1}{16}\right)^{2}}{2 . \frac{1}{16}}=\frac{2 \times \frac{1}{64}}{3 \times \frac{1}{16}}=\frac{1}{6}$
3. Let $M=\left[\begin{array}{lll}0 & 1 & a \\ 1 & 2 & 3 \\ 3 & b & 1\end{array}\right]$ and $\operatorname{adj} M=\left[\begin{array}{ccc}-1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1\end{array}\right]$ where a and b are real numbers. Which of the following options is/are correct ?
(1) $\operatorname{det}\left(\operatorname{adjM}^{2}\right)=81$
(2) $a+b=3$
(3) $(\operatorname{adj} M)^{-1}+\operatorname{adj} M^{-1}=-M$
(4) if $M\left[\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, then $\alpha-\beta+\gamma=3$

Sol. 2,3,4
$M=\left[\begin{array}{lll}0 & 1 & a \\ 1 & 2 & 3 \\ 3 & b & 1\end{array}\right]$ and adj $M=\left[\begin{array}{ccc}-1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1\end{array}\right]$
$\Rightarrow \operatorname{adj} M=\left[\begin{array}{ccc}2-3 b & a b-1 & -1 \\ 8 & -6 & 2 \\ b-6 & 3 & -1\end{array}\right]=\left[\begin{array}{ccc}-1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1\end{array}\right]$
$2-3 b=-1 \quad ; a b-1=1$
b-6 = $-5 ; a=2$
b $=1$
Now $M=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$
$|M|=8-10=-2$
$\Rightarrow \mathrm{a}+\mathrm{b}=3$ option (2)
$\left|\operatorname{adj}\left(M^{2}\right)\right|=\left|M^{2}\right|^{2}$
$=|M|^{4}=16$
(3) $(\operatorname{adjM})^{-1}+\operatorname{adj}\left(\mathrm{M}^{-1}\right)$ option(3)

हमारा विश्वास... हर एक विद्यार्थी है खुपास

$=\operatorname{adj}\left(M^{-1}\right)+\operatorname{adj}\left(M^{-1}\right)$
$=2 \operatorname{adj}\left(M^{-1}\right)$
$=2\left(\left|M^{-1}\right| M\right)$
$=2\left(\frac{1}{-2} M\right)$
$=-\mathrm{M}$
(4) $M\left[\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
$\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]\left[\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
$\beta+2 \gamma=1$
$\alpha+2 \beta+3 \gamma=2$
$3 \alpha+\beta+\gamma=1$
$\alpha 1$
$\beta=-1$
$\gamma=1$
$\alpha-\beta+\gamma=3 \quad$ option (4)
4. Let α and β be the roots of $x^{2}-x-1=0$, with $\alpha>\beta$. For all positive integer n, define
$a_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, n \geq 1$
$b_{1}=1$ and $b_{n}=a_{n-1}+a_{n+1}, n \geq 2$
Then which of the following options is/are correct ?
(1) $a_{1}+a_{2}+a_{3}+\ldots+a_{n}=a_{n+2}-1$ for all $n \geq 1$
(2) $b_{n}=\alpha^{n}+\beta^{n}$ for all $n \geq 1$
(3) $\sum_{n=1}^{\infty} \frac{b_{n}}{10^{n}}=\frac{8}{89}$
(4) $\sum_{n=1}^{\infty} \frac{a_{n}}{10^{n}}=\frac{10}{89}$

Sol. 1,2,4

$x^{2}-x-1=0$
$a_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}$ (2) $b_{1}=1 \quad b_{n}=a_{n-1}+a_{n+1}$
$\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}$

$$
\begin{aligned}
& b_{n}=\frac{\alpha^{n-1}-\beta^{n-1}}{\alpha-\beta}+\frac{\alpha^{n+1}+\beta^{n+1}}{\alpha-\beta} \\
& =\frac{\alpha^{n-1}\left(1+\alpha^{2}\right)-\beta^{n-1}\left(1+\beta^{2}\right)}{\alpha-\beta} \\
& =\frac{\alpha^{n-1}(\alpha+2)-\beta^{n-1}(\beta+2)}{\alpha-\beta} \\
& =\frac{\alpha^{n-1}\left(\frac{5+\sqrt{5}}{2}\right)-\beta^{n-1}\left(\frac{5-\sqrt{5}}{2}\right)}{\alpha-\beta} \\
& =\frac{\sqrt{5} \alpha^{n}+\sqrt{5} \beta^{n}}{\alpha-\beta}=\alpha^{n}+\beta^{n}
\end{aligned}
$$

$$
\text { (i) } a_{1}+a_{2}+a_{3}+\ldots+a_{n}
$$

$$
=\frac{\left(\alpha+\alpha^{2}+\ldots+\alpha^{n}\right)-\left(\beta+\beta^{2}+\ldots \beta^{n}\right)}{\alpha-\beta}
$$

$$
=\frac{\frac{\alpha\left(1-\alpha^{n}\right)}{1-\alpha}-\frac{\beta\left(1-\beta^{n}\right)}{1-\beta}}{\alpha-\beta}
$$

$$
\alpha^{2}-\alpha-1=0
$$

$$
\alpha^{2}-1=\alpha
$$

$$
\alpha+1=\frac{\alpha}{\alpha-1}
$$

$$
=\frac{-\alpha^{2}\left(1-\alpha^{n}\right)+\beta^{2}\left(1-\beta^{n}\right)}{\alpha-\beta}
$$

$$
=\frac{-\alpha^{2}+\alpha^{n+2}+\beta^{2}-\beta^{n+2}}{(\alpha-\beta)}
$$

$$
=\frac{\alpha^{n+2}-\beta^{n+2}}{\alpha-\beta}-(\alpha+\beta)
$$

$$
=a_{n+2}-1
$$

हमारा विश्वास... हर एक विद्यार्थी है खुपास

(3) $\sum \frac{\mathrm{b}_{n}}{10^{n}}=\sum\left(\frac{\alpha^{n}}{10^{n}}+\frac{\beta^{n}}{10^{n}}\right)$
$=\left(\frac{\alpha}{10}+\frac{\alpha^{2}}{10^{2}}+\ldots ..\right)$
$=\frac{\frac{\alpha}{10}}{1-\frac{\alpha}{10}}+\frac{\beta}{1-\frac{\beta}{10}}$
$=\frac{\alpha}{10-\alpha}+\frac{\beta}{10-\beta}$
$=\frac{10(\alpha+\beta)-2 \alpha \beta}{100-10(\alpha+\beta)+\alpha \beta}$
$=\frac{10+2}{100-10-1}=\frac{12}{89}$
(4) $\sum \frac{a^{n}}{10^{n}}=\frac{1}{\alpha-\beta}\left\{\frac{\alpha}{10-\alpha}-\frac{\beta}{10-\beta}\right\}$
$=\frac{1}{\alpha-\beta}\left\{\frac{10(\alpha-\beta)}{89}\right\}=\frac{10}{89}$
5. Let $f: R \rightarrow R$ be given by
$f(x)=\left\{\begin{array}{cc}x^{5}+5 x^{4}+10 x^{3}+10 x^{2}+3 x+1, & x<0 \\ x^{2}-x+1, & 0 \leq x<1 ; \\ \frac{2}{3} x^{3}-4 x^{2}+7 x-\frac{8}{3}, & 1 \leq x<3 \\ (x-2) \log _{e}(x-2)-x+\frac{10}{3}, & x \geq 3\end{array}\right.$
Then which of the following options is /are correct ?
(1) f is increasing on $(-\infty, 0)$
(2) f is onto
(3) f^{\prime} has a local maximum at $x=1$
(4) f^{\prime} is NOT differentiable at $x=1$

Sol. 2,3,4

हमारा विश्वास... हर एक विद्यार्थी है ख़ास

$$
f(x)=\left[\begin{array}{lc}
x^{5}+5 x^{4}+10 x^{3}+10 x^{2}+3 x+1 & x<0 \\
x^{2}-x+1 & 0 \leq x<1 \\
\frac{2}{3} x^{3}-4 x^{2}+7 x-\frac{8}{3} & 1 \leq x<3 \\
(x-2) \ln (x-2)-x+\frac{10}{3} & x \geq 3
\end{array}\right.
$$

f is onto \because Range $=R$ ($\ell \mathrm{n}(x-2)$ contains all real values)
$f^{\prime}(x)=\left[\begin{array}{cc}5 x^{4}+20 x^{3}+30 x^{2}+20 x+3 & x<0 \\ 2 x-1 & 0 \leq x<1 \\ 2 x^{2}-8 x+7 & 1 \leq x<3 \\ 1+\ell n(x-2)-1 & x \geq 3\end{array}\right.$
Check diff of f^{\prime} at $x=1<\begin{aligned} & \text { RHD }=-4\end{aligned} f$ is not diff.
$f^{\prime \prime}(x)=\left[\begin{array}{lc}20 x^{3}+60 x^{2}+60 x+20 & x<0 \\ 2 & 0 \leq x<1 \\ 4 x-8 & 1 \leq x<3 \\ \frac{1}{x-2} & x \geq 3\end{array}\right.$
$f^{\prime \prime}(x)=\left[\begin{array}{ll}20(1+x)^{3} & x<0 \\ 2 & 0 \leq x<1 \\ 4 x-8 & 1 \leq x<3 \\ \frac{1}{x-2} & x \geq 3\end{array}\right.$

6. There are three bags B_{1}, B_{2} and B_{3}. The bag B_{1} contains 5 red and 5 green balls, B_{2} contains 3 red and 5 green balls, and B_{3} contains 5 red and 3 green balls. Bags B_{1}, B_{2} and B_{3} have probabilities $\frac{3}{10}, \frac{3}{10}$ and $\frac{4}{10}$ respectively of being chosen. A bag is selected at random and a ball is chosen at random from the bag. Then which of the following options is/are correct ?
(1) Probability that the chosen ball is green, given that the selected bag is B_{3}, equals $\frac{3}{8}$
(2) Probability that the selected bag is B_{3} and the chosen ball is green equals $\frac{3}{10}$

हमारा विश्वास... हर एक विद्यार्थी है ख़ास

(3) Probability that the selected bag is B_{3}, given that chosen ball is green, equals $\frac{5}{13}$
(4) Probability that the chosen ball is green equals $\frac{39}{80}$

Sol. 1, 4
$\frac{5 R+5 G}{B_{1}} \frac{3 R+5 G}{B_{2}} \frac{5 R+3 G}{B_{3}}$
$P\left(B_{1}\right)=\frac{3}{10}\left|P\left(B_{2}\right)=\frac{3}{10}\right| P\left(B_{3}\right)=\frac{4}{10}$

1. $\mathrm{P}\left(\mathrm{G}_{1} \mid \mathrm{B}_{3}\right)=\frac{3}{8}=\frac{3}{8}$
2. $P\left(B_{3} \mid G\right)=\frac{4}{13}$
3. $P\left(B_{3} \mid G\right)=\frac{12}{39}=\frac{4}{13}$
4. $\mathrm{P}(\mathrm{G})=\frac{3}{10} \cdot \frac{5}{10}+\frac{3}{10} \cdot \frac{5}{8}+\frac{4}{10} \cdot \frac{3}{8}=\frac{12+15+12}{80}=\frac{39}{80}$
5. In a non-right angled triangle $\triangle P Q R$, let p, q, r denote the lengths of the sides opposite to the angles at P, Q, R respectively. The median from R meets the side $P Q$ at S, the perpendicular from P meets the side $Q R$ at E, and $R S$ and $P E$ intersect at O. If $p=\sqrt{3}, q=1$, and the radius of the circumcircle of the $\triangle \mathrm{PQR}$ equals 1 , then which of the following options is/are correct?
(1) Length of $\mathrm{RS}=\frac{\sqrt{7}}{2}$
(2) Length of $\mathrm{OE}=\frac{1}{6}$
(3) Radius of incircle $\triangle \mathrm{PQR}=\frac{\sqrt{3}}{2}(2-\sqrt{3})$
(4) Area of $\triangle \mathrm{SOE}=\frac{\sqrt{3}}{12}$

Sol. 1,2,3

हमारा विश्वास... ह एक विद्यार्यी है खुवास

sin Law
$\frac{Q P}{\sin P}=\frac{P R}{\sin \theta}=\mathbf{2 R}$
$\frac{\sqrt{3}}{\sin P}=\frac{1}{\sin \theta}=\mathbf{2}$
$\sin P=\frac{\sqrt{3}}{2}\left\langle\begin{array}{l}P=60 \\ P=120\end{array}\right.$
$\sin \theta=\frac{1}{2}\left\langle\begin{array}{c}\theta=30 \\ \theta=150\end{array}\right.$
$\angle P=120^{\circ}, \theta=30^{\circ}, \angle \mathrm{R}=30^{\circ}$
(1) $\quad \mathrm{RS}=\frac{1}{2} \sqrt{2(\sqrt{3})^{2}+2(1)^{2}-1}=\frac{\sqrt{7}}{2}$ Ans 1
(2) Eq. of $\operatorname{RS}:(y-0)=\frac{\frac{1}{4}-0}{\frac{\sqrt{3}}{4}-\sqrt{3}}(x-\sqrt{3}) \Rightarrow y=-\frac{1}{3 \sqrt{3}}(x-\sqrt{3})$

Hence coordinate of $O:\left(\frac{\sqrt{3}}{2}, \frac{1}{6}\right)$

$$
\Rightarrow \quad \mathrm{OE}=\frac{1}{6}
$$

(3) $\quad r=\frac{\Delta}{S}=\frac{\frac{1}{2} \cdot \sqrt{3} \cdot \frac{1}{2}}{\frac{\sqrt{3}+1+1}{2}}=\frac{\sqrt{3}}{2(2+\sqrt{3})}$

$$
\frac{\sqrt{3}}{2}(2-\sqrt{3})
$$

(4) $\Delta=\frac{1}{2}\left|\begin{array}{ccc}\frac{\sqrt{3}}{2} & 0 & 1 \\ \frac{\sqrt{3}}{2} & \frac{1}{6} & 1 \\ \frac{\sqrt{3}}{4} & \frac{1}{4} & 1\end{array}\right|$

हमारा विश्वास... ह एक विद्यार्थी है खुवास

$$
\begin{aligned}
& =\left|\frac{\sqrt{3}}{4}\right| \begin{array}{ccc}
1 & 0 & 1 \\
1 & \frac{1}{6} & 1 \\
\frac{1}{2} & \frac{1}{4} & 1
\end{array}\left|=\left|\frac{\sqrt{3}}{4}\left\{1\left(\frac{1}{6}-\frac{1}{4}\right)+1\left(\frac{1}{4}-\frac{1}{12}\right)\right\}\right|\right. \\
& =\left|\frac{\sqrt{3}}{4}\left\{\frac{-2}{24}+\frac{2}{12}\right\}\right| \quad=\left|\frac{\sqrt{3}}{4} \cdot \frac{2}{24}\right|=\frac{\sqrt{3}}{48}
\end{aligned}
$$

8. Let L_{1} and L_{2} denote the lines

$$
\begin{aligned}
& \vec{r}=\hat{i}+\lambda(-\hat{i}++2 \hat{j}+2 \hat{k}), \lambda \in R \text { and } \\
& \vec{r}=\mu(2 \hat{i}-\hat{j}+2 \hat{k}), \mu \in R
\end{aligned}
$$

respectively, If L_{3} is a line which is perpendicular to both L_{1} and L_{2} and cuts both of them, then which of the following options describe(s) L_{3} ?
(1) $\vec{r}=\frac{2}{9}(2 \hat{i}-\hat{j}+2 \hat{k})+t(2 \hat{i}+2 \hat{j}-\hat{k}), t \in R$
(2) $\vec{r}=\frac{2}{9}(4 \hat{i}+\hat{j}+\hat{k})+t(2 \hat{i}+2 \hat{j}-\hat{k}), t \in R$
(3) $\vec{r}=\frac{1}{3}(2 \hat{i}+\hat{k})+t(2 \hat{i}+2 \hat{j}-\hat{k}), t \in R$
(4) $\vec{r}=t(2 \hat{i}+2 \hat{j}-\hat{k}) t \in R$

Sol. 1,2
$L_{1} \rightarrow \frac{x-1}{-1}=\frac{y-0}{2}=\frac{z-0}{2}$
$L_{2} \rightarrow \frac{x}{2}=\frac{y}{-1}=\frac{z}{2}$
$L_{3} \rightarrow \frac{x}{a}=\frac{y}{b}=\frac{z}{c}$
$\mathrm{L}_{3} \perp \mathrm{~L}_{1} \& \mathrm{~L}_{2}$
$L_{3} \|\left(L_{1} \times L_{2}\right)$
$\therefore \mathrm{L}_{3} \|(6 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})$
Let any point on L_{1} is $\equiv(-\lambda+1,2 \lambda, 2 \lambda)$
Let any point on L_{2} is $B \equiv(2 \mu,-\mu, 2 \mu)$
DR(s) of AB will be
$2 \mu+\lambda-1,-\mu-2 \lambda, 2 \mu-2 \lambda$
But D.R. of $A B$ are
$6,6,-3$ or $2,2,-1$
$\therefore \frac{2 \mu+\lambda-1}{2}=\frac{-\mu-2 \lambda}{2}=\frac{2 \mu-2 \lambda}{-1}=\mathrm{k}$ (let)

हमारा विश्वास... ह एक विद्यार्यी है खुपास

$\therefore 2 \mu+\lambda-1=2 k$
$-\mu-2 \lambda=2 k$
$2 \mu-2 \lambda=-k$
Solve (1) \& (3)
$\lambda=\frac{3 \mathrm{k}+1}{3}$
Put $\lambda=\frac{3 \mathrm{k}+1}{3}$ in equation (2)
$\mu=\frac{12 \mathrm{k}+2}{(-3)}$
Put $\lambda \& \mu$ in eq. (3)
$2\left(\frac{12 k+2}{-3}\right)-2\left(\frac{3 k+1}{3}\right)+k=0$
$k=-\frac{2}{9}$
$\therefore \lambda=\frac{3\left(-\frac{2}{9}\right)+1}{3}=\frac{-\frac{2}{3}+1}{3}=\frac{1}{9}$
$\mu=\frac{12\left(\frac{-2}{9}\right)+2}{-3}=\frac{\frac{-8}{3}+2}{-3}=\frac{2}{9}$
$\therefore A \equiv(-\lambda+1,2 \lambda, 2 \lambda) \quad \Rightarrow\left(\frac{-1}{9}+1, \frac{2}{9}, \frac{2}{9}\right)$
$A \equiv\left(\frac{8}{9}, \frac{2}{9}, \frac{2}{9}\right)$
$\therefore B \equiv(2 \mu,-\mu, 2 \mu) \quad \Rightarrow \quad B \equiv\left(\frac{4}{9}, \frac{-2}{9}, \frac{4}{9}\right)$
\therefore Equation of L_{3} can be
$L_{3} \rightarrow \vec{r}=\frac{2}{9}(4 \hat{i}+\hat{j}+\hat{k})+t(2 \hat{i}+2 \hat{j}-\hat{k}), t \in R$
or $L_{3} \rightarrow \vec{r}=\frac{2}{9}(2 \hat{i}-\hat{j}+2 \hat{k})+t(2 \hat{i}+2 \hat{j}-\hat{k}), t \in R$

हमारा विश्वास... हर एक विद्यार्थी है खुगास

Section - 3

- This section contains SIX (06) qeustions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, truncate/roundoff the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme; Full Marks $\quad:+3$ If ONLY the correct numerical value is entered Zero Marks : 0 in all other cases.

1. Three lines are given by

$$
\begin{aligned}
& \vec{r}=\lambda \hat{i}, \lambda \in R \\
& \vec{r}=\mu(\hat{i}+\hat{j}), \mu \in R \\
& \vec{r}=v(\hat{i}+\hat{j}+\hat{k}), v \in R
\end{aligned}
$$

Let the lines cut the plane $x+y+z=1$ at the points A, B and C respectively. If the area of the triangle $A B C$ is Δ then value of $(6 \Delta)^{2}$ equals \qquad -.

Sol. 0.75

```
\(\vec{r}=\lambda \hat{i} \quad \vec{r}=\mu(\hat{i}+\hat{j}) \quad \vec{r}=v(\hat{i}+\hat{j}+\hat{k})\)
\(x+y+z=1\)
Ist line
\(x=\lambda, \quad y=0, \quad z=0\)
\(\therefore \quad \lambda=1 \quad A(1,0,0)\)
For \(2^{\text {nd }}\) Line
\(x=\mu, y=\mu, z=0\)
\(\therefore 2 \mu=1 \quad B\left(\frac{1}{2}, \frac{1}{2}, 0\right)\)
```

Similarly $C\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
\therefore Area of $\Delta=\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|$
$=\frac{1}{2}\left|\left(-\frac{1}{2} \hat{i}+\frac{1}{2} \hat{j}\right) \times\left(-\frac{2}{3} \hat{i}+\frac{1}{3} \hat{j}++\frac{1}{3} \hat{k}\right)\right|$
$=\frac{1}{2}\left|\begin{array}{ccc}i & j & k \\ \frac{-1}{2} & \frac{1}{2} & 0 \\ \frac{-2}{3} & \frac{1}{3} & \frac{1}{3}\end{array}\right|=\frac{1}{2}\left\{\hat{i}\left(\frac{1}{6}\right)-\hat{j}\left(\frac{-1}{6}\right)+\hat{k}\left(\frac{1}{6}\right)\right\}$
$=\frac{1}{2}\left|\frac{\hat{\mathrm{i}}}{6}+\frac{\hat{\mathrm{j}}}{5}+\frac{\hat{\mathrm{k}}}{6}\right| \quad=\frac{1}{2} \sqrt{\frac{3}{36}} ; \quad \Delta=\frac{\sqrt{3}}{12}$
$\therefore(6 \Delta)^{2}=\frac{3}{4}=.75$

हमारा विश्वास... हर एक विद्यार्थी है खुास

2. Let S be the sample space of all 3×3 matrices with entries from the set $\{0,1\}$, Let the events E_{1} and E_{2} be given by

$$
\begin{aligned}
& E_{1}=\{A \in S: \operatorname{det} A=0\} \text { and } \\
& E_{2}=\{A \in S: \text { sum of entries of } A \text { is } 7\}
\end{aligned}
$$

If a matrix is chosen at random from S, then the conditional probability $P\left(E_{1} \mid E_{2}\right)$ equals
2. $1 / 2$

Sample space $=2^{9}$
$P\left(E_{1} / E_{2}\right)=\frac{P\left(E_{1} \cap E_{2}\right)}{P\left(E_{2}\right)}$
E_{2} : sum of entries 7
\therefore '7' one and '2' zero
$\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0\end{array}\right|$ total $E_{2}=\frac{9!}{7!2!}=\frac{8 \times 9}{2}=36$
$\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0\end{array}\right|$ for $|\mathrm{A}|$ to be zero both zeros should by in same row or column
$\therefore(3 \times 3) 2=18$
$\therefore P\left(E_{1} / E_{2}\right)=\frac{18}{36}=\frac{1}{2}$
$\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right|=1(1)-1(-1)$
3. Let $\omega \neq 1$ be a cube root of unity. Then the minimum of the set $\left\{\left|a+b \omega+c \omega^{2}\right|^{2}: a, b, c\right.$ distinct non-zero integers\} equals \qquad _.

Sol. 3

$\left|a+b \omega+c \omega^{2}\right|^{2}$
$=\left(a+b \omega+c \omega^{2}\right)\left(a+b \omega^{2}+c \omega\right)$
$=\left\{a^{2}+b^{2}+c^{2}-a b-b c-c a\right\}$
$=\frac{1}{2}\left\{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right\}$
$=\frac{1}{2}\{1+1+4\}=3$

हमारा विश्वास... हर एक विद्यार्थी है खुास

4. Let $\operatorname{AP}(\mathrm{a} ; \mathrm{d})$ denote the set of all the terms of an infinite arithmetic progression with first term α and common difference $d>0$, If
$A P(1 ; 3) \cap A P(2 ; 5) \cap A P(3 ; 7)=A P(a ; d)$ then $a+d$ equals \qquad .

Sol. 157

First AP

$$
a=1, \text { common diff. }=3
$$

Second AP

$$
a=2, \text { common diff. }=5
$$

Third AP
$\mathrm{a}=3$, common diff. $=7$
Now on AP whose first term and common diff. is common of all three
$\therefore 1+(n-1) 3=2+(m-1) 5=3+(k-1) 7$
(i) $\frac{3 n+1}{5}=m \quad$ and $\quad \frac{3 n+2}{7}=k$
m and k are integer
So at $\mathrm{n}=18 \quad \mathrm{~m}=11$ and $\mathrm{k}=8$
first term of $A P \Rightarrow 1+(18-1) 3=52$
Common diff. $=\operatorname{LCM}(3,5,7)=105$
$\therefore a+d=157$
5. If $\mathrm{I}=\frac{2}{\pi} \int_{-\pi / 4}^{\pi / 4} \frac{\mathrm{dx}}{\left(1+\mathrm{e}^{\sin x}\right)(2-\cos 2 x)}$ then $27 \mathrm{I}^{2}$ equals \qquad .

Sol. 4

$I=\frac{2}{\pi} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{d x}{\left(1+e^{\sin x}\right)(2-\cos 2 x)}$
Apply King $x \rightarrow-x$
$I=\frac{2}{\pi} \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{e^{\sin x}}{\left(1+e^{\sin x}\right)(2-\cos 2 x)} ; 2 I=\frac{2}{\pi} \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{d x}{2-\cos 2 x}$
$\therefore I=\frac{2}{\pi} \int_{0}^{\frac{\pi}{4}} \frac{d x}{1+2 \sin ^{2} x}=\frac{2}{\pi} \int_{0}^{\frac{\pi}{4}} \frac{\sec ^{2} x d x}{1-\tan ^{2} x+2 \tan ^{2} x}, \tan x=t$
$=\frac{2}{\pi} \int_{0}^{1} \frac{\mathrm{dt}}{1+3 \mathrm{t}^{2}}=\frac{2}{3 \pi}=\frac{2}{\sqrt{3 \pi}} \tan ^{-1}(\sqrt{3} \mathrm{t})_{0}^{1}=\frac{2}{\sqrt{3 \pi}}\left(\frac{\pi}{3}\right)=\frac{2}{3 \sqrt{3}}=\mathrm{I}$
$\therefore 27 \times \frac{4}{27}=4$

हमारा विश्वास... हर एक विद्यार्थी है खुगास

6. Let the point B be the reflection of the point $A(2,3)$ with respect to the line $8 x-6 y-23=0$. Let Γ_{A} and Γ_{B} be circles of radii 2 and 1 with centres A and B resepectively. Let T be a common tangent to the circles Γ_{A} and Γ_{B} such that both the circles are on the same side of T. If C is the point of intersection of T and the line passing through A and B, then the length of the line segment $A C$ is \qquad —.
7. 10

For B
$\frac{x-2}{8}=\frac{y-3}{-6}=\frac{-2(16-18-23)}{64+36}$
$\frac{x-2}{8}=\frac{y-3}{6}=\frac{-2(-25)}{100}$
$\frac{x-2}{8}=\frac{y-3}{6}=\frac{1}{2} \quad \therefore x=6$ and $y=6$
B $(6,6)$
Now for ' C ' external division in ratio $r_{1}: r_{2}$
$a=\frac{2.6-1.2}{2-1} \quad b=\frac{2.6-1.3}{2-1}$
$a=10, \quad b=9$
$\therefore A C=\sqrt{8^{2}+6^{2}}$
$=\sqrt{64+36}$
$=\sqrt{100}=10$

Based on JEE Advanced'19

	FEE (After Scholarship)
140 above	Drona Residential Program Free
120 to 139	₹ 0
100 to 120	₹ 14,500
90 to 99	₹ 29,000
80 to 89	₹ 43,500
69 to 79	₹ 58,000
40 to 69	₹ 87,000

*Scholarship Applicable at Kota Center Only

Based on JEE Main'19

	JEE Main Percentile
99 \& Above	
97.5 To 99	
97 To 97.5	
96.5 To 97	
96 To 96.5	
95.5 To 96	
95 To 95.5	
93 To 95	
90 To 93	
85 To 90	
80 To 85	
75 To 80	

English	Hindi
Fees (After Scholarship)	
Drona Residential Program Free	
₹ 0	₹ 0
₹ 14,500	₹ 14,500
₹ 29,000	₹ 29,000
₹ 58,000	₹ 58,000
₹ 65,250	₹ 65,250
₹ 72,500	₹ 72,500
₹ 87,000	₹ 87,000
₹ $1,01,500$	₹ 94,250
₹ 1,08,750	₹ $1,01,500$
₹ 1,16,000	₹ $1,08,750$
₹ 1,30,500	₹ $1,23,250$

JEE MAIN Special Batch for Class 14th Repeaters

Flat 50\% Scholarship

