

24 ${ }^{\text {th }}$ Feb. 2021 | Shift - 2 CHEMISTRY

JEE I NEET I Foundation

Motion

MOTION JEE MAIN 2021

1. The correct order of the following compounds showing increasing tendency towards nucleophilic substitution reaction is :

(i)

(ii)

(iii)

(iv)
(1) (iv) < (i) < (iii) < (ii)
(2) (iv) < (i) < (ii) < (iii)
(3) (i) < (ii) < (iii) < (iv)
(4) (iv) < (iii) < (ii) < (i)

Ans. (3)

Sol.

(i)
(ii)
(iii)
(iv)

Reactivity $\propto-\mathrm{m}$ group present at O / P position.
2. Match List-I with List-II

List- I
(Metal)
List-II
(Ores)
(a) Aluminium
(i) Siderite
(b) Iron
(ii) Calamine
(c) Copper
(iii) Kaolinite
(d) Zinc
(iv) Malachite

Choose the correct answer from the options given below :
(1) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
(2) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
(3) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
(4) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)

Ans. (3)
Sol. Siderite FeCO_{3}
Calamine $\quad \mathrm{ZnCO}_{3}$
Kaolinite $\quad \mathrm{Si}_{2} \mathrm{Al}_{2} \mathrm{O}_{5}(\mathrm{OH})_{4}$ or $\mathrm{Al}_{2} \mathrm{O}_{3} .2 \mathrm{SiO}_{2} .2 \mathrm{H}_{2} \mathrm{O}$
Malachite $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$

निपिटर्स बैच का सर्वश्रेष्ठ परिणाम सिर्फ मोशन के साय

3. Match List-I with List-II

List- I
(Salt)
(a) LiCl
(b) NaCl
(c) RbCl
(d) CsCl
(i) 455.5 nm
(ii) 970.8 nm
(iii) 780.0 nm
(iv) 589.2 nm

List-II
(Flame colour wavelength)

Choose the correct answer from the options given below :
(1) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
(2) (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)
(3) (a)-(iv), (b)-(ii), (c)-(iii), (d)-(i)
(4) (a)-(i), (b)-(iv), (c)-(ii), (d)-(iii)

Ans. (2)
Sol. Range of visible region : - 390nm-760nm VIBGYOR Violet Red

LiCl Crimson Red
NaCl Golden yellow
RbCl Violet
CsCl Blue
So Licl Which is crimson have wave length closed to red in the spectrum of visible region which is as per given data is.
4. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A : Hydrogen is the most abundant element in the Universe, but it is not the most abundant gas in the troposphere.
Reason R : Hydrogen is the lightest element.
In the light of the above statements, choose the correct answer from the given below
(1) A is false but R is true
(2) Both A and R are true and R is the correct explanation of A
(3) A is true but R is false
(4) Both A and R are true but R is NOT the correct explanation of A

Ans. (2)
Sol. Hydrogen is most abundant element in universe because all luminous body of universe i.e. stars \& nebulae are made up of hydrogen which acts as nuclear fuel $\&$ fusion reaction is responsible for their light.

MOTION JEE MAIN 2021

5. Given below are two statements :

Statement I : The value of the parameter "Biochemical Oxygen Demand (BOD)" is important for survival of aquatic life.

Statement II : The optimum value of BOD is 6.5 ppm .
In the light of the above statements, choose the most appropriate answer from the options given below.
(1) Both Statement I and Statement II are false
(2) Statement I is false but Statement II is true
(3) Statement I is true but Statement II is false
(4) Both Statement I and Statement II are true

Ans. (3)
Sol. For survival of aquatic life dissolved oxygen is responsible its optimum limit 6.5 ppm and optimum limit of BOD ranges from $10-20 \mathrm{ppm} \& B O D$ stands for biochemical oxygen demand.
6. Wich one of the following carbonyl compounds cannot be prepared by addition of wate on an alkyne in the presence of HgSO_{4} and $\mathrm{H}_{2} \mathrm{SO}_{4}$?
(1)

(2)

(3)

(4)

Ans. (1)
Sol. Reaction of Alkyne with $\mathrm{HgSO}_{4} \& \mathrm{H}_{2} \mathrm{SO}_{4}$ follow as
$\mathrm{CH} \equiv \mathrm{CH}$

Hence, by this process preparation of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
Cann't possible.

निपिटर्स तैव का सर्वश्रेष्ठ परिणाम सिर्प मोशन के साय

7. Which one of the following compounds is non-aromatic?
(1)

(2)

(3)

(4)

Ans. (2)

Sol.

Hence It is non-aromatic.
8. The incorrect statement among the following is :
(1) VOSO_{4} is a reducing agent
(2) Red colour of ruby is due to the presence of CO^{3+}
(3) $\mathrm{Cr}_{2} \mathrm{O}_{3}$ is an amphoteric oxide
(4) RuO_{4} is an oxidizing agent

Ans. (2)
Sol. Red colour of ruby is due to presence of CrO_{3} or Cr^{+6} not CO^{3+}

MOTİON" JEE MAIN 2021

9. According to Bohr's atomic theory :
(A) Kinetic energy of electron is $\propto \frac{z^{2}}{n^{2}}$
(B) The product of velocity (v) of electron and principal quantum number (n). 'vn' $\propto \mathrm{Z}^{2}$.
(C) Frequency of revolution of electron in an orbit is $\propto \frac{\mathrm{Z}^{3}}{\mathrm{n}^{3}}$.
(D) Coulombic force of attraction on the electron is $\propto \frac{\mathrm{Z}^{3}}{\mathrm{n}^{4}}$.

Choose the most appropriate answer from the options given below:
(1) (C) only
(2) (A) and (D) only
(3) (A) only
(4) (A), (C) and (D) only

Ans. (2) Correction on NTA

Sol. (A) $\mathrm{KE}=-\mathrm{TE}=13.6 \times \frac{\mathrm{Z}^{2}}{\mathrm{n}^{2}} \mathrm{eV}$
$K E \propto \frac{Z^{2}}{n^{2}}$
(B) $V=2.188 \times 10^{6} \times \frac{Z}{n} \mathrm{~m} / \mathrm{sec}$.

So, $\mathrm{Vn} \propto \mathrm{Z}$
(C) Frequency $=\frac{V}{2 \pi r}$

So, $\mathrm{F} \propto \frac{\mathrm{Z}^{2}}{\mathrm{n}^{3}} \quad\left[\therefore \mathrm{r} \propto \frac{\mathrm{n}^{2}}{\mathrm{z}}\right.$ and $\left.\mathrm{v} \propto \frac{\mathrm{z}}{\mathrm{n}}\right]$
(D) Force $\propto \frac{z}{r^{2}}$

So, $F \propto \frac{Z^{3}}{n^{4}}$
So, only statement (A) is correct
10. Match List-I with List-II
List- I List-II
(a) Valium
(i) Antifertility drug
(b) Morphine
(ii) Pernicious anaemia
(c) Norethindrone
(iii) Analgesic
(d) Vitamin B_{12}
(iv) Tranquilizer
(1) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
(2) (a)-(i), (b)-(iii), (c)-(iv), (d)-(ii)
(3) (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)
(4) (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)

Ans. (4)
Sol.
(a) Valium
(iv) Tranquilizer
(b) Morphine
(iii) Analgesic
(c) Norethindrone
(i) Antifertility drug
(d) Vitamin B_{12}
(ii) Pernicious anaemia
11. The Correct set from the following in which both pairs are in correct order of melting point is:
(1) $\mathrm{LiF}>\mathrm{LiCl} ; \mathrm{NaCl}>\mathrm{MgO}$
(2) $\mathrm{LiF}>\mathrm{LiCl} ; \mathrm{MgO}>\mathrm{NaCl}$
(3) $\mathrm{LiCl}>\mathrm{LiF} ; \mathrm{NaCl}>\mathrm{MgO}$
(4) $\mathrm{LiCl}>\mathrm{LiF} ; \mathrm{MgO}>\mathrm{NaCl}$

Ans. (2)
Sol. Generally
M.P. \propto Lattice energy $=\frac{K Q_{1} Q_{2}}{r^{+}+r^{-}}$

$$
\propto \text { (packing efficiency) }
$$

12. The calculated magnetic moments (spin only value) for species $\left[\mathrm{FeCl}_{4}\right]^{2-},\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$ and MnO_{4}^{2-} respectively are :
(1) 5.92, 4.90 and 0 BM
(2) $5.82,0$ and 0 BM
(3) 4.90, 0 and 1.73 BM
(4) 4.90, 0 and 2.83 BM

Ans. (3)
Sol. $\quad\left[\mathrm{FeCl}_{4}\right]^{2-} \mathrm{Fe}^{2+} 3 \mathrm{~d}^{6} \rightarrow 4$ unpaired electron. as Cl^{-}in a weak field liquid.
$\mu_{\text {spin }}=\sqrt{24} 8 \mathrm{M}$
$=4.9 \mathrm{BM}$
$\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-} \mathrm{Co}^{3+} 3 \mathrm{~d}^{6} \rightarrow$ for Co^{3+} with coodination no. $6 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ is strong field ligend \& causes pairing \& hence no. unpaired electron
$\mu_{\text {spin }}=0$
$\left[\mathrm{MnO}_{4}\right]^{2-} \mathrm{Mn}^{+6}$ it has one unpaired electron.
$\mu_{\text {spin }}=\sqrt{3} \mathrm{BM}$
13.

Which of the following reagent is suitable for the preparation of the product in the above reaction.
(1) Red $\mathrm{P}+\mathrm{Cl}_{2}$
(2) $\mathrm{NH}_{2}-\mathrm{NH}_{2} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$
(3) $\mathrm{Ni} / \mathrm{H}_{2}$
(4) NaBH_{4}

MOTION JEE MAIN 2021

Ans. (2)

Sol.

It is wolf-kishner reduction of carbonyl compounds.
14. The diazonium salt of which of the following compounds will form a coloured dye on reaction with β-Naphthol in NaOH ?
(1)

(2)

(2)

(4)

Ans. (3)

Sol.

15. What is the correct sequence of reagents used for converting nitrobenzene into mdibromobenzene?

(1)

$$
\xrightarrow{\mathrm{Sn} / \mathrm{HCl}} / \xrightarrow{\mathrm{Br}_{2}} / \xrightarrow{\mathrm{NaNO}_{2}} / \xrightarrow{\mathrm{NaBr}}
$$

(2) \qquad
(3) $\xrightarrow{\mathrm{NaNO}_{2}} / \xrightarrow{\mathrm{HCl}} / \xrightarrow{\mathrm{KBr}} / \xrightarrow{\mathrm{H}^{+}}$
(4) $\xrightarrow{\mathrm{Br}_{2} / \mathrm{Fe}} / \xrightarrow{\mathrm{Sn} / \mathrm{HCl}} / \xrightarrow{\mathrm{NaNO}_{2} / \mathrm{HCl}} / \xrightarrow{\text { CuBr } / \mathrm{HBr}}$

Ans. (4)

रिपिहर्स तैच का सर्वशेष्ठ परिणाम सिर्प मोश्रन के साय

16. The correct shape and I-I-I bond angles respectively in I_{3}^{-}ion are :
(1) Trigonal planar; 120°
(2) Distorted trigonal planar; 135° and 90°
(3) Linear; 180°
(4) T-shaped; 180° and 90°

Ans. (3)
Sol. $\quad I_{3}^{-} s p^{3} d$ hybridisation (2BP + 3L.P.) Linear geometry

17. What is the correct order of the following elements with respect to their density ?
(1) $\mathrm{Cr}<\mathrm{Fe}<\mathrm{Co}<\mathrm{Cu}<\mathrm{Zn}$
(2) $\mathrm{Cr}<\mathrm{Zn}<\mathrm{Co}<\mathrm{Cu}<\mathrm{Fe}$
(3) $\mathrm{Zn}<\mathrm{Cu}<\mathrm{Co}<\mathrm{Fe}<\mathrm{Cr}$
(4) $\mathrm{Zn}<\mathrm{Cr}<\mathrm{Fe}<\mathrm{Co}<\mathrm{Cu}$

Ans. (4)
Sol. Fact Based
Density depend on many factor like atomic mass. atomic radius and packing efficiency.

MOTION" JEE MAIN 2021

18. Match List-I and List-II.

List - I
$\stackrel{\mathrm{O}}{\|}$
(a) $\mathrm{R}-\mathrm{C}-\mathrm{Cl} \rightarrow \mathrm{R}-\mathrm{CHO}$

List-II
(b) $\mathrm{R}-\mathrm{CH}_{2}-\mathrm{COOH} \rightarrow \mathrm{R}-\mathrm{CH}-\mathrm{COOH}$

0
\|
(c) $\mathrm{R}-\mathrm{C}-\mathrm{NH}_{2} \rightarrow \mathrm{R}-\mathrm{NH}_{2}$ 0
||
(d) $\mathrm{R}-\mathrm{C}-\mathrm{CH}_{3} \rightarrow \mathrm{R}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(iv) $\mathrm{Cl}_{2} /$ Red $\mathrm{P}, \mathrm{H}_{2} \mathrm{O}$

Choose the correct answer from the options given below :
(1) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
(2) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
(3) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
(4) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)

Ans. (4)

Sol. (a) $\mathrm{R}-\mathrm{C}-\mathrm{Cl} \xrightarrow{\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{BaSO}_{4}} \mathrm{R}-\mathrm{CHO}$ (Rosenmunt reaction)
(b) $\mathrm{R}-\mathrm{CH}_{2}-\mathrm{COOH} \xrightarrow{\mathrm{Cl}_{2} / \text { Red } \mathrm{P}, \mathrm{H}_{2} \mathrm{O}} \mathrm{R}-\mathrm{CH}-\mathrm{COOH}$ (HVZ reaction)
|
CI

19. In polymer Buna-S ; 'S' stands for :
(1) Styrene
(2) Sulphur
(3) Strength
(4) Sulphonation

Ans. (1)
Sol. Buna-S is the co-polymer of buta- 1, 3 diene \& styrene.
20. Most suitable salt which can be used for efficient clotting of blood will be :
(1) $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$
(2) FeSO_{4}
(3) NaHCO_{3}
(4) FeCl_{3}

निपिटर्स बैच का सर्वश्रेष्ठ परिणाम सिर्फ मोशन के साय

Ans. (4)
Sol. Blood is a negative sol. According to hardy-Schulz's rule, the cation with high charge has high coagulation power. Hence, FeCl_{3} can be used for clotting blood.

Section -B

1. The magnitude of the change in oxidising power of the $\mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{2+}$ couple is $\times \times 10^{-4} \mathrm{~V}$, if the H^{+}concentration is decreased from 1 M to $10^{-4} \mathrm{M}$ at $25^{\circ} \mathrm{C}$. (Assume concentration of MnO_{4}^{-}and Mn^{2+} to be same on change in H^{+}concentration). The value of x is \qquad _. (Rounded off to the nearest integer)
$\left[\right.$ Given : $\left.\frac{2303 R T}{F}=0.059\right]$
Ans. 3776
Sol. $5 \mathrm{e}^{-}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{+2}+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Q}=\frac{\left[\mathrm{Mn}^{+2}\right]}{\left[\mathrm{H}^{+}\right]^{8}\left[\mathrm{MnO}_{4}^{-}\right]} \quad \Rightarrow \quad \mathrm{E}_{1}=\mathrm{E}^{\circ}-\frac{0.059}{5} \log \left(\mathrm{Q}_{1}\right)$
$E_{2}=E^{\circ}-\frac{0.059}{5} \log \left(Q_{2}\right) \quad \Rightarrow \quad E_{2}-E_{1}=\frac{0.059}{5} \log \left(\frac{Q_{1}}{Q_{2}}\right)$
$=\frac{0.059}{5} \log \left\{\frac{\left[\mathrm{H}^{+}\right]_{\mathrm{II}}}{\left[\mathrm{H}^{+}\right]_{\mathrm{I}}}\right\}^{8} \quad \Rightarrow \quad=\frac{0.059}{5} \log \left(\frac{10^{-4}}{1}\right)^{8}$
$\left(E_{2}-E_{1}\right)=\frac{0.059}{5} \times(-32) \quad \Rightarrow \quad\left|\left(E_{2}-E_{1}\right)\right|=32 \times \frac{0.059}{5}=x \times 10^{-4}$
$=\frac{32 \times 590}{5} \times 10^{-4}=x \times 10^{-4} \Rightarrow \quad=3776 \times 10^{-4} \quad x=3776$
2. Among the following allotropic forms of sulphur, the number of allotropic forms, which will show paramagnetism is \qquad _.
(1) α-sulphur
(2) β-sulphur
(3) S_{2}-form

Ans. (1)
Sol. S_{2} is like O_{2} i;e paramagnetic as per molecular orbital theory.
3. $\mathrm{C}_{6} \mathrm{H}_{6}$ freezes at $5.5^{\circ} \mathrm{C}$. The temperature at which a solution of 10 g of $\mathrm{C}_{4} \mathrm{H}_{10}$ in 200 g of $\mathrm{C}_{6} \mathrm{H}_{6}$ freeze is \qquad ${ }^{\circ} \mathrm{C}$. (The molal freezing point depression constant of $\mathrm{C}_{6} \mathrm{H}_{6}$ is) $5.12^{\circ} \mathrm{C} / \mathrm{m}$)

Motion Jee maln 2021

Ans. 1
Sol. $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \times \mathrm{K}_{\mathrm{f}} \times \mathrm{m}$
$=(1) \times 5.12 \times \frac{10 / 58}{200} \times 1000 \quad \Rightarrow \quad \Delta T_{f}=\frac{5.12 \times 50}{58}=4.414$
$T_{f(\text { solution })}=T_{K(\text { solvent })}-\Delta T_{f}$
$=5.5-4.414$
$=1.086^{\circ} \mathrm{C}$
$\approx 1.09^{\circ} \mathrm{C}=1$ (nearest integer)
4. The volume occupied by 4.75 g of acetylene gas at $50^{\circ} \mathrm{C}$ and 740 mmHg pressure is \qquad L.
(Rounded off to the nearest integer)
(Given $\mathrm{R}=0.0826 \mathrm{~L}$ atm $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$)
Ans. 5
Sol. $\mathrm{T}=50^{\circ} \mathrm{C}=323.15 \mathrm{~K}$
$P=740 \mathrm{~mm}$ of $\mathrm{Hg}=\frac{740}{760} \mathrm{~atm}$
$V=?$
moles $(n)=\frac{4.75}{26}$
$V=\frac{4.75}{26} \times \frac{0.0821 \times 323.15}{740} \times 760$
$V=4.97 \simeq 5$ Lit
5. The solubility product of PbI_{2} is 8.0×10^{-9}. The solubility of lead iodide in 0.1 molar solution of lead nitrate is $x \times 10^{-6} \mathrm{~mol} / \mathrm{L}$. The value of x is \qquad (Rounded off to the nearest integer)
[Given $\sqrt{2}=1.41$]
Ans. 141
Sol. $\mathrm{K}_{\mathrm{SP}}\left(\mathrm{PbI}_{2}\right)=8 \times 10^{-9}$
$\operatorname{PbI}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Pb}^{+2}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq})$

$$
S+0.1 \quad 2 S
$$

$\mathrm{K}_{\mathrm{SP}}=\left[\mathrm{Pb}^{+2}\right]\left[\mathrm{I}^{-}\right]^{2}$
$8 \times 10^{-9}=(S+0.1)(2 S)^{2} \Rightarrow 8 \times 10^{-9} \simeq 0.1 \times 4 \mathrm{~S}^{2}$
$\Rightarrow \mathrm{S}^{2}=2 \times 10^{-8}$
$\mathrm{S}=1.414 \times 10^{-4} \mathrm{~mol} / \mathrm{Lit}$
$=\mathrm{x} \times 10^{-6} \mathrm{~mol} /$ Lit $\quad \therefore \mathrm{x}=141.4 \simeq 141$

निपिटर्स वैच का सर्वश्रेष्ठ परिणाम सिर्प मोश्रन के साय

6. The total number of amines among the following which can be synthesized by Gabriel synthesis is \qquad -.
(1)

(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(3)

(4)

Ans. (3)
Sol. Only aliphatic amines can be prepared by Gabriel synthesis.
7. 1.86 g of aniline completely reacts to form acetanilide. 10% of the product is lost during purificatiion. Amount of acetanilide obtained after purification (in g) is \qquad $\times 10^{-2}$.

Ans. 243

Sol.

Molar mass $=93$ Molarmass $=135$
93 g Aniline produce 135 g acetanilide
1.86 g produce $\frac{135 \times 1.86}{93}=2.70 \mathrm{~g}$

At 10% loss, 90% product will be formed after purification.
\therefore Amount of product obtained $=\frac{2.70 \times 90}{100}=2.43 \mathrm{~g}=243 \times 10^{-2} \mathrm{~g}$
8. The formula of a gaseous hydrocarbon which requires 6 times of its own volume of O_{2} for complete oxidation and produces 4 times its own volume of CO_{2} is $\mathrm{C}_{x} \mathrm{H}_{y}$. The value of y is \qquad

Ans. 8
Sol. $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+6 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+\frac{\mathrm{y}}{2} \mathrm{H}_{2} \mathrm{O}$
Applying POAC on 'O' atoms
$6 \times 2=4 \times 2+y / 2 \times 1$
$y / 2=4 \Rightarrow y=8$

MOTIOON JEE MAIN 2021

9. Sucrose hydrolyses in acid solution into glucose and fructose following first order rate law with a half-life of 3.33 h at $25^{\circ} \mathrm{C}$. After 9 h , the fraction of sucrose remaining is f . The value of $\log _{10}\left(\frac{1}{\mathrm{f}}\right)$ is \qquad $\times 10^{-2}$ (Rounded off to the nearest integer)
[Assume: $\ln 10=2.303, \ln 2=0.693$]

Ans. 81
Sol. Sucose $\xrightarrow{\text { Hydrolysis }}$ Glucose + Fructose
$t_{1 / 2}=3.33 h=\frac{10}{3} h \quad \Rightarrow \quad C_{t}=\frac{C_{o}}{2^{t / t_{1 / 2}}}$
Fraction of sucrose remaining $=f=\frac{C_{t}}{C_{0}}=\frac{1}{2^{t / t_{1 / 2}}}$
$\frac{1}{f}=2^{t / t_{1 / 2}}$
$\log (1 / f)=\log \left(2^{t / t_{1 / 2}}\right)=\frac{t}{t_{1 / 2}} \log (2)$
$=\frac{9}{10 / 3} \times 0.3=\frac{8.1}{10}=0.81=x \times 10^{-2} \quad x=81$
10. Assuming ideal behaviour, the magnitude of $\log \mathrm{K}$ for the following reaction at $25^{\circ} \mathrm{C}$ is $\times \times 10^{-1}$.

The value of x is \qquad .(Integer answer)

$$
3 \mathrm{HC} \equiv \mathrm{CH}_{(\mathrm{g})} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{6(\ell)}
$$

[Given : $\Delta_{f} G^{\circ}(\mathrm{HC} \equiv \mathrm{CH})=-2.04 \times 10^{5}$] $\mathrm{mol}^{-1} ; \Delta_{f} G^{\circ}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)=-1.24 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1}$;
$\left.\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right]$
Ans. 855
Sol. $3 \mathrm{HC} \equiv \mathrm{CH}(\mathrm{g}) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{6}(\ell)$
$\Delta \mathrm{G}_{\mathrm{r}}^{\circ}=\Delta \mathrm{G}_{\mathrm{f}}^{\circ}\left[\mathrm{C}_{6} \mathrm{H}_{8}(\ell)\right]-3 \times \Delta \mathrm{G}_{\mathrm{f}}^{\circ}[\mathrm{HC} \equiv \mathrm{CH}]$
$=\left[-1.24 \times 10^{5}-3 x\left(-2.04 \times 10^{5}\right)\right]$
$=4.88 \times 10^{5} \mathrm{~J} / \mathrm{mol}$
$\Delta G_{r}^{0}=-R T \ln \left(K_{\text {eq }}\right)$
$\log \left(\mathrm{K}_{\mathrm{eq}}\right)=\frac{-\Delta \mathrm{G}^{\circ}}{2.303 \mathrm{RT}}$
$=\frac{-4.88 \times 10^{5}}{2.303 \times 8.314 \times 298}$
$=-8.55 \times 10^{1}=855 \times 10^{-1}$

Another opportunity to strengthen your preparation

UNNATI CRASH COURSE JEE Main May 2021 at Kota Classroom

40 Classes of each subjects
Doubt Clearing sessions by Expert faculties

- Full Syllabus Tests to improve your question solving skills
- Thorough learning of concepts with regular classes
-Gettips \& trick along with sample papers

Course Fee : ₹ 20,000

Start your JEE Advanced 2021

Preparation with

UTTHAN CRASH COURSE at Kota Classroom

- Complete course coverage
- 55 Classes of each subject
- 17 Full \& 6 Part syllabus tests will strengthen your exam endurance
- Doubt clearing sessions under the guidance of expertfaculties
- Gettips \& trick along with sample papers

