

JEE I NEET I Foundation

SECTION - A

1.
$$A \xrightarrow{(C_4H_8Cl_2)} \xrightarrow{Hydrolysis} B \xrightarrow{(C_4H_8O)}$$

B reacts with Hydroxyl amine but does not give Tollen's test. Identify A and B.

- (1) 1, 1-Dichlorobutane and 2-Butanone
- (2) 2, 2- Dichlorobutane and Butan-2-one
- (3) 2, 2- Dichlorobutane and Butanal
- (4) 1, 1- Dichlorobutane and Butanal

Ans. (2)

Sol.

$$C - C - C - C - C \xrightarrow{\text{Hydrolysis}} C - C - C - C \xrightarrow{\text{OH}} C - C - C - C \xrightarrow{\text{OH}} C - C - C - C = C$$

$$A \qquad B$$

Compound 'B' does not gives Tollen's test due to presence of kenotic group but react with hydroxyl amine

2. Match List-I with List-II.

List -I List-II
(Ore) (Element Present)

- (a) Kernite (i) Tin
- (b) Cassiterite (ii) Boron
- (c) Calamine (iii) Fluorine
- (d) Cryolite (iv) Zinc

Choose the most appropriate answer from the option given below:

- (1) (a) (ii), (b) (iv), (c) (i), (d) (iii)
- (2) (a) (ii), (b) (i), (c) (iv), (d) (iii)
- (3) (a) (i), (b) (iii), (c) (iv), (d) (ii)
- (4) (a) (iii), (b) (i), (c) (ii), (d) (iv)

Ans. (2)

Sol. Fact

Toll Free: 1800-212-1799

Motion[™]

3. For the given reaction :

$$\begin{array}{c} CH_2CH_3 \\ \hline \\ UV \ light \\ \hline \\ CN \end{array}$$

What is 'A' ?

$$(1) \begin{array}{c} CH_2CH_3 \\ \\ \\ CN \end{array}$$

Ans. (4)

Sol.
$$CH_2-CH_3$$

$$\xrightarrow{Br_2/UV \text{ light}} CH_3$$

$$CN$$

It is bezylic substitution reaction

- **4.** The orbital having two radial as well as two angular nodes is
 - (1) 5d
- (2) 4f

- (3) 3p
- (4) 4d

Ans. (1)

Sol. A.N. =
$$\ell$$

$$R.N = n - \ell - 1$$

Orbital	Angular	Radial
	Node	Node
5d	2	2
4f	3	0
3р	1	1
4d	0	1

Toll Free: 1800-212-1799

MOTION" JEE MAIN 2021

5. Given below are two statement :

Statement I: o-Nitrophenol is steam volatile due to intramolecular hydrogen bonding

Statement II: o-Nitrophenol has high melting point due to hydrogen bonding.

In the light of the above statements, choose the most appropriate answer from the options given below :

- (1) Both Statement I and Statement II are false
- (2) Statement I is false but Statement II is true
- (3) Both Statement I and Statement II are true
- (4) Statement I is true but Statement II is false
- Ans. (4)
- **Sol.** o-Nitrophenol is steam volatile due to intramolecular hydrogen H-bonding. but m-Nitrophenol has more melting point due to its symmetry.
- **6.** An amine on reaction with benzenesulphonyl chloride produces a compound insoluble in alkaline solution. This amine can be prepared by ammonolysis of ethyl chloride. The correct structure of amine is :

(1)
$$CH_3CH_2CH_2 \stackrel{H}{N-} CH_2CH_3$$

(2) CH₃CH₂CH₂NHCH₃

(4) CH₃CH₂NH₂

Ans. (1)

Sol.

Soluble in alkalines

R-NH - R
$$\xrightarrow{C_6H_5SO_2Cl}$$
 R- N - S - C₆H₅

2°-amine O

(In soluble in alkalines)

According to the question the amine should be 2°-amine, in which one of the alkyl group should be ethyl, because it can be formed by ammonolysis of ethyl chloride

Toll Free: 1800-212-1799

Motion[®]

7. For the given reaction :

What is 'A'

(4) CH₃CH₂CH₂NH₂

Ans. (3)

Sol.

$$CH_3 - CH = CH \xrightarrow{NaNH_2} CH_3 - CH \equiv CH \xrightarrow{red hot Fe-tube} CH_3$$

(mesitylene)

8. Statement about heavy water are given below

- A. Heavy water is used in exchange reactions for the study of reaction mechanisms
- B. Heavy water is prepared by exhaustive electrolysis of water
- C. Heavy water has higher boiling point than ordinary water
- D. Viscosity of H₂O is greater than D₂O
- (1) A and B only

(2) A and D only

(3) A, B and C only

(4) A and C only

Ans. (3) Sol. Fact

9. Which of the following is 'a' FALSE statement?

- (1) Carius tube used in the estimation of sulphur in an organic compound
- (2) Kjedahl's method is used for the estimation of nitrogen in an organic compound
- (3) Phosphoric acid produced on oxidation of phosphorus present in an organic compound is precipitated as $Mg_2P_2O_7$ by adding magnesia mixture
- (4) Carius method is used for the estimation of nitrogen in an organic compound

Ans. (4)

Sol. Fact

Toll Free: 1800-212-1799

MOTION JEE MAIN 2021

10. Given below are two statements:

Statement I: A mixture of chloroform and aniline can be separated by simple distillation

When separating aniline from a mixture of aniline and water by steam Statement II: distillation aniline boils below its boiling point

In the light of the above statements, choose the most appropriate answer from the options given below

- (1) Statement I is true, statement II is false
- (2) Both Statement I and Statement II are true
- (3) Both Statement I and Statement II are false
- (4) Statement I is false, Statement II is true

Ans. (2)

- Sol. A suitable method for separating a mixture of aniline and chloro form would be steam distillation. Steam distillation is the process used to separate aromatic compound from a mixture because of their temperature sensitivity. Therefore, steam distillation is an ideal method for their separation
- 11. Which of the following vitamin is helpful in delaying the blood clotting?
 - (1) Vitamin B
- (2) Vitamin C
- (3) Vitamin K
- (4) Vitamin E

Ans. (3)

- Sol. Vitamin K is used by the body to help blood clot.
- 12. The presence of ozone in troposphere:
 - (1) generates photochemical smog
- (2) Protects us from the UV radiation
- (3) Protects us from the X-ray radiation (4) Protects us from greenhouse effect

Ans. (2)

- Sol. The presence of ozone in troposphere protect earth from ultra violet rays
- 13. On treating a compound with warm dil. H₂SO₄, gas X is evolved which turns K₂Cr₂O₇ paper acidified with dil. H₂SO₄ to a green compound Y. X and Y respectively are:

(1)
$$X = SO_2$$
, $Y = Cr_2(SO_4)_3$

(2)
$$X = SO_2$$
, $Y = Cr_2O_3$

(3)
$$X = SO_3$$
, $Y = Cr_2O_3$

(4)
$$X = SO_3$$
, $Y = Cr_2(SO_4)_3$

Ans.

Sol.
$$SO_2 + K_2Cr_2O_7 + H_2SO_4 \longrightarrow Cr_2(SO_4)_3 + K_2SO_4 + H_2O_4$$

Toll Free: 1800-212-1799

MOTION

14. Find A, B and C in the following reaction:

 $NH_3 + A + CO_2 \rightarrow (NH_4)_2CO_3$

 $(NH_4)_2CO_3 + H_2O + B \rightarrow NH_4HCO_3$

 $NH_4HCO_3 + NaCl \rightarrow NH_4Cl + C$

(1) A - H_2O ; B - CO_2 ; C - $NaHCO_3$

(3) $A - O_2$; $B - CO_2$; $C - Na_2CO_3$

(2) A - H_2O ; B - O_2 ; C - Na_2CO_3 (4) $A - H_2O$; $B - O_2$; $C - NaHCO_3$

Ans.

Sol. (1) $NH_3 + H_2O + CO_2 \rightarrow (NH_4)_2CO_3$

(2) $(NH_4)_2CO_3 + H_2O + CO_2 \rightarrow NH_4HCO_3$

(3) NH₄HCO₃ + NaCl → NH₄Cl + NaHCO₃

15. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A: Dipole-dipole interactions are the only non-covalent interactions, resulting in hydrogen bond formation

Reason R: Fluorine is the most electronegative element and hydrogen bonds in HF are symmetrical

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) A is false but R is true
- (2) Both A and R are true and R is the correct explanation of A
- (3) A is true but R is false
- (4) Both A and R are true and R is not the correct explanation of A

(3) Ans.

Sol. Fact

16. Match List-I with List-II.

List -I

List-II

Electronic

 Δ_i H in kJ mol⁻¹

configuration

of elements

- (a) $1s^22s^2$
- (i) 801
- (b) $1s^22s^22p^4$
- (ii) 899
- (c) $1s^22s^22p^3$
- (iii) 1314
- (d) $1s^22s^22p^1$

- (3) (a) (i), (b) (iv), (c) (ii), (d) (ii) (2) (a) (iv), (b) (i), (c) (iii), (d) (iii) (1) (1)

Ans.

Sol. Order of I.E. in second period

> $Li \, < \, B \, < \, Be \, < \, C \, < \, O \, < \, N \, < \, F \, < \, Ne$ $2p^1$ $2s^2$ $2p^2$ $2p^4$ $2p^3$

Toll Free: 1800-212-1799

17. Which one of the following lanthanoids does not form MO_2 ?

[M is lanthanoid metal]

(1) Nd

(2) Yb

(3) Dy

(4) Pr

Ans. (2)

Sol. Fact

18. Identify the major products A and B respectively in the following reaction of phenol :

$$\begin{array}{c|c}
\hline
\text{B} & \text{(i) CHCl}_3, \text{ NaOH} \\
\hline
\text{(ii) H}_3\text{O}^+ & \hline
\end{array}$$

$$\begin{array}{c|c}
\hline
\text{Br}_2 \text{ in CS}_2 \\
\hline
273\text{K}
\end{array}$$

$$(1) \begin{picture}(1){c} OH & OH \\ And & OH \\ Br \end{picture}$$

Ans. (1)

Sol.
$$OH \rightarrow CH=0$$
 $CHCI_3 / NaOH \rightarrow Br_2 in CS_2 \rightarrow Br$ $(major)$ $OH \rightarrow Br$ $(major)$

Toll Free: 1800-212-1799

Motion[®]

19. The structure of Neoprene is :

$$(1) = \begin{bmatrix} CH_2 - CH \end{bmatrix}_n$$

$$\begin{bmatrix} CN \end{bmatrix}$$

(2)
$$-CH_2 - C = CH - CH_2$$

$$(3) \begin{array}{c} + N & N \\ & & \\$$

(4)
$$+CH_2CH = CH - CH_2 - CH_2 - CH_3 - CH$$

Ans. (2)

neoprene

20. Compound A used as a strong oxidizing agent is amphoteric in nature. It is the part of lead storage batteries. Compound A is :

(1) Pb₃O₄

- (2) PbO₂
- (3) PbSO₄
- (4) PbO

Ans. (2)

Sol. lead storage batteries PbO_2 is used. In this O.S. of Pb is +4 so it is always reduced and behaves as oxidizing agent

SECTION - B

224 mL of $SO_{2(g)}$ at 298 K and 1 atm is passed through 100 mL of 0.1 M NaOH solution. The non-volatile solute produced is dissolved in 36 g of water. The lowering of vapour pressure of solution (assuming the solution is dilute) ($P_{(H_2O)}^* = 24$ mm of Hg) is $x \times 10^{-2}$ mm of Hg, the value of x is _____ .

Ans. (0.18)

Sol. The balanced equation is

 $SO_2 + 2NaOH \longrightarrow Na_2SO_3 + H_2O$

moles of NaOH = molarity \times volume (in litre)

 $= 0.1 \times 0.1$

= 0.01 moles

Here NaOH is limiting Reagent

2 mole NaOH \longrightarrow 1 mole Na₂SO₃

 $0.01 \text{ mole NaOH} \longrightarrow \frac{1}{2} \times 0.01 \text{ mole Na}_2SO_3$

Moles of $Na_2SO_3 \longrightarrow 0.005$ mole

 $Na_2SO_3 \longrightarrow 2Na^+ + SO_3^{2-}$

i = 3

Toll Free: 1800-212-1799

Moles of
$$H_2O = \frac{36}{18} = 2$$
 moles

Accoding to RLVP -

$$\frac{P_A^o - P_A}{P_\Delta^o} = i X_B$$

$$\frac{P_A^o - P_A}{P_A^o} = \frac{in_A}{in_A + n_B} \ (in_A \simeq \ 0)$$

$$n_B \ll n_A$$

$$\{n_A^{} + n_B^{} \simeq n_A^{}\}$$

$$\frac{P_A^o - P_A}{P_\Delta^o} = i \times \frac{n_B}{n_A}$$

$$\frac{2H-P_A}{2H}=3\times\frac{0.005}{2}$$

$$\Rightarrow$$
 2H - P_A = 0.18

Lowering in pressure = 0.18 mm of Hg

lowering in pressure = 18×10^{-12} mm of Hg

$$x = 18$$

2. Consider the following reaction

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{+2} + 4H_2O$$
, $E^o = 1.51 \text{ V}$.

The quantity of electricity required in Faraday to reduce five moles of MnO₄ is_____.

Ans. (25)

Sol.
$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{+2} + 4H_2O_4$$

1 mole of MnO₄ require 5 faraday charge

5 moles of MnO_4^- will require 25 faraday charge.

3.12 g of oxygen is adsorbed on 1.2 g of platinum metal. The value of oxygen adsorbed per gram of the adsorbent at 1 atm and 300 K in L is _____. $[R = 0.0821 \text{ L atm K}^{-1} \text{ mol}^{-1}]$

Ans. (2)

Sol. Moles of
$$O_2 = \frac{3.12}{32} = 0.0975$$

volume of
$$O_2 = \frac{nRT}{p} = \frac{0.0975 \times 0.082 \times 300}{1}$$

= 2.3985L \simeq 2.4 L

volume of O_2 absorbed per gm of pt = $\frac{2.4}{1.2}$ = 2

Toll Free: 1800-212-1799

Motion[®]

4. The number of significant figures in 50000.020×10^{-3} is _____.

Ans. (7)

Sol. 50000.020×10^{-3}

Number of significant figure = 7

5. Number of bridging CO ligands in $[Mn_2(CO)_{10}]$ is _____.

Ans. (0)

Sol. Fact

6. For a chemical reaction $A + B \rightleftharpoons C + D$

 $(\Delta_r H^{\ominus} = 80 \text{ kJ mol}^{-1})$ the entropy change $\Delta_r S^{\ominus}$ depends on the temperature T (in K) as $\Delta_r S^{\ominus} = 2 \text{T (J K}^{-1} \text{ mol}^{-1})$.

Minimum temperature at which it will become spontaneous is _____K.

Ans. (200)

Sol. $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$

To make the process spontaneous

 $\Delta G^{\circ} < 0$

$$\Delta H^{\circ} - T\Delta S^{\circ} < 0$$

 $T > \frac{\Delta H^{\circ}}{\Delta S^{\circ}}$

 $T > \frac{80000}{2T}$

 $2T^2 > 80000$

 $T^2 > 40000$

T > 200

The minimum temperature to make it spontaneous is 200 K.

7. An exothermic reaction $X \to Y$ has an activation energy 30 kJ mol⁻¹. If energy change ΔE during the reaction is -20 kJ, then the activation energy for the reverse reaction in kJ is _____.

Ans. (50)

Sol. $\Delta H = E_{a, f} - E_{a, b}$ $-20 = 30 - E_{a, b}$

 $E_{a, b} = 50 \text{ kJ/mole}$

Toll Free: 1800-212-1799

A certain gas obeys $P(V_m - b) = RT$. The value of $\left(\frac{\partial Z}{\partial P}\right)_T$ is $\frac{xb}{RT}$. The value of x is _____. 8.

Ans. **(1)**

Sol.
$$P(v - b) = RT$$

 $PV - Pb = RT$

$$PV - PD = K$$

 $PV - Ph$

$$\frac{PV}{RT} - \frac{Pb}{RT} = 1$$

$$Z = 1 + \frac{PV}{RT}$$

$$\frac{dz}{dp} = 0 + \frac{b}{RT}$$

$$\Rightarrow \frac{b}{RT} = \frac{xb}{RT}$$

$$x = 1$$

9. A homogeneous ideal gaseous reaction $AB_{2(g)} \rightleftharpoons A_{(g)} + 2B_{(g)}$ is carried out in a 25 litre flask at 27°C. The initial amount of AB₂ was 1 mole and the equilibrium pressure was 1.9 atm.

The value of K_p is $x \times 10^{-2}$. The value of x is _____. [R = 0.08206 dm³ atm K^{-1} mol⁻¹]

$$[R = 0.08206 \text{ dm}^3 \text{ atm } \text{K}^{-1} \text{ mol}^{-1}]$$

(74)Ans.

Sol.
$$AB_{2(g)} = A_{(g)} + 2B_{(g)}$$

at eq.
$$\frac{1}{1+2x}$$
 $\frac{1}{1.9}$

By ratio of pressure & mole

$$\frac{1}{1+2x} = \frac{0.985}{1.9}$$

$$1.9 = 0.985 + 1.9 x$$

$$0.915 = 1.9 \times$$

$$\frac{0.915}{1.9} = x \; \; ; \; \; K_p = \frac{4x^2.x}{(1-x)} \; \left[\frac{P_{total}}{n_{total}} \right]^2 \label{eq:Kp}$$

$$\Rightarrow \frac{4x^3}{1-x} \bigg(\frac{RT}{V} \bigg)^2$$

On substituting the values

$$K_p = 74 \times 10^{-2}$$

10. Dichromate ion is treated with base, the oxidation number of Cr in the product formed is :

Ans.

Sol.
$$Cr_2O_7^{2-} + 2OH^- \rightleftharpoons 2CrO_4^{2-} + H_2O$$

$$x + (-2 \times 4) = -2$$

$$x = 6$$

Toll Free: 1800-212-1799

Motion[®]

Another opportunity to strengthen your preparation

UNNATI CRASH COURSE JEE Main May 2021

at Kota Classroom

- 40 Classes of each subjects
- Doubt Clearing sessions by Expert faculties
- Full Syllabus Tests to improve your question solving skills
- Thorough learning of concepts with regular classes
- Get tips & trick along with sample papers

Course Fee : ₹ 20,000

Start your **JEE Advanced 2021**Preparation with

UTTHAN CRASH COURSE

at Kota Classroom

- Complete course coverage
- 55 Classes of each subject
- 17 Full & 6 Part syllabus tests will strengthen your exam endurance
- Doubt clearing sessions under the guidance of expert faculties
- Get tips & trick along with sample papers

Course Fee : ₹ 20,000

