

	13953	662	1066

(Under 50000 Rank) (since 2016) (5th to 10th class)

Motion
 Nurturing potential through education

H.O. : 394, Rajeev Gandhi Nagar, Kota
www.motion.ac.in \boxtimes : info@motion.ac.in

[PHYSICS]

1. When a certain photosensitive surface is illuminated with monochromatic light of frequency v , the stopping potential for the photo current is $-\mathrm{V}_{0} / 2$. When the surface is illuminated by monochromatic light of frequency $v / 2$, the stopping potential is $-\mathrm{V}_{0}$. The threshold frequency for photoelectric emission is -
(A) $\frac{4}{3} v$
(B) 2 v
(C) $\frac{5 v}{3}$
(D) $\frac{3 v}{2}$

Sol. D
$\frac{h\left(v-v_{0}\right)=\frac{e v_{0}}{2}}{h\left(\frac{v}{2}-v_{0}\right)=e v_{0}}$
$\frac{v-v_{0}}{\frac{v}{2}-v_{0}}=\frac{1}{2}$
$V_{0}=2 V-\frac{V}{2}$
$V_{0}=\frac{3 V}{2}$
2. In the given circuit diagram, the currents, $I_{1}=0.3 \mathrm{~A}, \mathrm{I}_{4}=0.8 \mathrm{~A}$ and $\mathrm{I}_{5}=0.4 \mathrm{~A}$, are flowing as shown. The currents $\mathrm{I}_{2}, \mathrm{I}_{3}$ and I_{6}, respectively, are -

(A) $1.1 \mathrm{~A}, 0.4 \mathrm{~A}, 0.4 \mathrm{~A}$
(B) $1.1 \mathrm{~A},-0.4 \mathrm{~A}, 0.4 \mathrm{~A}$
(C) $0.4 \mathrm{~A}, 1.1 \mathrm{~A}, 0.4 \mathrm{~A}$
(D) $-0.4 \mathrm{~A}, 0.4 \mathrm{~A}, 1.1 \mathrm{~A}$

Sol. A

From KCL, $\mathrm{I}_{3}=0.8-0.4=0.4 \mathrm{~A}$
$\mathrm{I}_{2}=0.4+0.4+0.3$
$=1.1 \mathrm{~A}$
$\mathrm{I}_{6}=0.4 \mathrm{~A}$
3. A soap bubble, blown by a mechanical pump at the mouth of a tube, increases in volume, with time, at a constant rate. The graph that correctly depicts the time dependence of pressure inside the bubble is given by :-
(A)

(B)

(C)

(D)

Sol. Bonus

$\mathrm{v}=\mathrm{ct}$
$\frac{4}{3} \pi \mathrm{R}^{3}=\mathrm{ct}$
$\Rightarrow R=1 t^{\frac{1}{3}}$
$P_{i n}=P_{0}+\frac{4 T}{k t^{1 / 3}}$
$=P=P_{0}+\frac{C}{t^{1 / 3}}$
$Y=C+m x$
4. To double the covering range of a TV transmittion tower, its height should be multiplied by -
(A) 2
(B) $\frac{1}{\sqrt{2}}$
(C) $\sqrt{2}$
(D) 4

Sol. D

5. A 10 m long horizontal wire extends from North East to South West. It is falling with a speed of 5.0 ms^{-1}, at right angles to the horizontal component of the earth's magnetic field, of $0.3 \times 10^{-4} \mathrm{~Wb} / \mathrm{m}^{2}$. The value of the induced emf in wire is -
(A) $1.1 \times 10^{-3} \mathrm{~V}$
(B) $1.5 \times 10^{-3} \mathrm{~V}$
(C) $0.3 \times 10^{-3} \mathrm{~V}$
(D) $2.5 \times 10^{-3} \mathrm{~V}$

Sol. A,B

Induced emf $=\mathrm{Bv} \ell \sin 45^{\circ}$
$=0.3 \times 10^{-4} \times 5 \times 10 \sin 45^{\circ}$
$=1.06 \times 10^{-3} \mathrm{~V}$
6. In a radioactive decay chain, the initial nucleus is ${ }_{90}^{232} \mathrm{Th}$. At the end there are 6α-particles and 4 β-particles which are emitted. If the end nucleus is ${ }_{Z}^{A} X, A$ and Z are given by -
(A) $A=208 ; Z=80$
(B) $A=202 ; Z=80$
(C) $A=208 ; Z=82$
(D) $A=200 ; Z=81$

Sol. C

${ }_{90}^{232} \mathrm{Th} \longrightarrow{ }_{78}^{208} \mathrm{Y}+{ }_{2}^{4} \mathrm{He}$
${ }_{78}^{208} \mathrm{Y} \longrightarrow{ }_{82}^{208} \mathrm{X}+4 \beta$ praticle
7. In the above circuit, $C=\frac{\sqrt{3}}{2} \mu \mathrm{~F}, \mathrm{R}_{2}=20 \Omega$,
$L=\frac{\sqrt{3}}{10} H$ and $R_{1}=10 \Omega$. Current in $L-R_{1}$ path is I_{1} and in $C-R_{2}$ path it is I_{2}. The voltage of a.C. source is given by, $V=200 \sqrt{2} \sin (100 t)$ volts. The phase difference between I_{1} and I_{2} is -

(A) 0°
(B) 90°
(C) 30°
(D) 60°

Sol. Bonus

$x_{e}=\frac{1}{\omega_{c}}=\frac{4}{10^{-6} \times \sqrt{3} \times 100}=\frac{2 \times 10^{4}}{\sqrt{3}}$
$\tan \theta / 2 \frac{\mathrm{x}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{e}}}=\frac{10^{3}}{\sqrt{3}}$
θ_{1} is close to 90
For L-R circuit
$\mathrm{x}_{\mathrm{L}}=\mathrm{w}_{\mathrm{L}}=100 \times \frac{\sqrt{3}}{10}=\sqrt{3}$

$\tan \theta_{2}=\frac{\mathrm{X}_{\mathrm{e}}}{\mathrm{R}}$
$\tan \theta_{2}=\sqrt{3}$
$\theta_{2}=60$
So phase difference comes out $90+60=150$.
Therefore Ans. is bonus
If R_{2} is $20 \mathrm{k} \Omega$
then phase difference comes out to be $60+30=90^{\circ}$
8. A particle of mass 20 g is released with an initial velocity $5 \mathrm{~m} / \mathrm{s}$ along the curve from the point A , as shown in the figure. The point A is at height h from point B. The particle slides along the frictionless surface. When the particle reaches point B, its angular momentum about O will be (Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)

(A) $2 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
(B) $6 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
(C) $3 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
(D) $8 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$

Sol. B

Work Energy Theorem from A to B
$\mathrm{mgh}=\frac{1}{\mathrm{~g}} \mathrm{mv}_{\mathrm{B}}{ }^{2}-\frac{1}{\mathrm{~g}} \mathrm{mv}_{A}{ }^{2}$
$2 \mathrm{gh}=\mathrm{v}_{\mathrm{B}}{ }^{2}-\mathrm{v}_{\mathrm{A}}{ }^{2}$
$2 \times 10 \times 10=v_{B}{ }^{2}-5^{2}$
$\mathrm{v}_{\mathrm{B}}=15 \mathrm{~m} / \mathrm{s}$
Angualr momentum about 0
$\mathrm{L}_{0}=\mathrm{mvr}$
$=20 \times 10^{-3} \times 20$
$\mathrm{L}_{0}=6 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$
9. two satellites, A and B, have masses m and $2 m$ respectively. A is in a circular orbit of radius R, and B is in a circular orbit of radius $2 R$ around the earth. The ratio of their kinetic energies, T_{A} / T_{B} is -
(A) $\sqrt{\frac{1}{2}}$
(B) 1
(C) $\frac{1}{2}$
(D) 2

Sol. B

Orbital velocity $V=\sqrt{\frac{G M e}{r}}$
$T_{A}=\frac{1}{2} m_{A} V_{A}{ }^{2}$
$T_{B}=\frac{1}{2} m_{B} V_{B}^{2}$
$\Rightarrow \frac{T_{A}}{T_{B}}=\frac{m \times \frac{G m}{R}}{2 m \times \frac{G m}{2 R}}$
$\Rightarrow \frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{B}}}=1$
10. A paramagnetic material has 10^{28} atoms $/ \mathrm{m}^{3}$. Its magnetic susceptibility at temperature 350 K is 2.8×10^{-4}. Its susceptibility at 300 K is -
(A) 3.267×10^{-4}
(B) 3.726×10^{-4}
(C) 2.672×10^{-4}
(D) 3.672×10^{-4}

Sol. A
$x \propto \frac{1}{T_{C}}$
curie law for paramagnetic substance
$\frac{\mathrm{x}_{1}}{\mathrm{x}_{2}}=\frac{\mathrm{T}_{\mathrm{C}_{2}}}{\mathrm{~T}_{\mathrm{C}_{1}}}$
$\frac{2.80 \times 10^{-4}}{\mathrm{x}_{2}}=\frac{300}{350}$
$x_{2}=\frac{2.8 \times 350 \times 10^{-4}}{300}$
$=3.266 \times 10^{-4}$
11. In the figure, given that V_{BB} supply can vary from 0 to $5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V}, \beta_{\mathrm{dc}}=200, \mathrm{R}_{\mathrm{B}}=100 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{C}}$ $=1 \mathrm{k} \Omega$ and $\mathrm{V}_{\mathrm{BE}}=1.0 \mathrm{~V}$. The minimum base current and the input voltage at which the transistor will go to saturation, will be, respectively -

(A) $25 \mu \mathrm{~A}$ and 2.8 V
(B) $20 \mu \mathrm{~A}$ and 3.5 V
(C) $25 \mu \mathrm{~A}$ and 3.5 V
(D) $20 \mu \mathrm{~A}$ and 2.8 V

Sol. C
At saturation, $\mathrm{V}_{\mathrm{CE}}=0$
$V_{C E}=V_{C C}-I_{C} R_{C}$
$\Rightarrow I_{C}=\frac{V_{C C}}{R_{C}}=5 \times 10^{-3} \mathrm{~A}$
Given, $\beta_{\mathrm{dc}}=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{B}}}$
$I_{B}=\frac{5 \times 10^{-3}}{200}$
$I_{B}=25 \mu \mathrm{~A}$
At input side
$V_{B B}=I_{B} R_{B}+V_{B E}$
$=(25 \mathrm{~mA})(100 \mathrm{k} \Omega)+1 \mathrm{~V}$
$\mathrm{V}_{\mathrm{BB}}=3.5 \mathrm{~V}$
12. Formation of real image using a biconvex lens is shown below -

If the whole set up is immersed in water without disturbing the object and the screen positions, what will one obsere on the screen ?
(A) Erect real image
(B) Image disappears
(C) No change
(D) Magnified image

Sol. B

From $\frac{1}{f}=\left(\mu_{\text {rel }}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
Focal length of lens will change hence image disappears from the screen.
13. An ideal gas is enclosed in a cylidner at pressure of 2 atm and temperature, 300 K . The mean time between two successive collisions is $6 \times 10^{-8} \mathrm{~S}$. If the pressure is doubled and temperature is increased to 500 K , the mean time between two successive collisions will be close to -
(A) $3 \times 10^{-6} \mathrm{~s}$
(B) $2 \times 10^{-7} \mathrm{~s}$
(C) $4 \times 10^{-8} \mathrm{~s}$
(D) $0.5 \times 10^{-8} \mathrm{~s}$

Sol. C
$\mathrm{t} \propto \frac{\text { Volume }}{\text { velocity }}$
volume $\propto \frac{T}{P}$
$\therefore \mathrm{t} \propto \frac{\sqrt{\mathrm{T}}}{\mathrm{P}}$
$\frac{t_{1}}{6 \times 10^{-8}}=\frac{\sqrt{500}}{2 P} \times \frac{P}{\sqrt{300}}$
$\mathrm{t}_{1}=3.8 \times 10^{-8}$
$\approx 4 \times 10^{-8}$
14. In a Frank-Hertz experiment, an electron of energy 5.6 eV passes through mercury vapour and emerges with an energy 0.7 eV . The minimum wavelength of photons emitted by mercury atoms is close to -
(A) 2020 nm
(B) 220 nm
(C) 1700 nm
(D) 250 nm

Sol. D
$\lambda=\frac{1240}{5.6-0.7} \mathrm{~nm}$
15. A plano-convex lens (focal length f_{2}, refractive index μ_{2}, radius of curvature R) fits exactly into a plano-concave lens (focal length f_{1}, refractive index μ_{1}, radius of curvature R). Their plane surfaces are parallel to each other. Then, the focal length of the combination will be-
(A) $\frac{\mathrm{R}}{\mu_{2}-\mu_{1}}$
(B) $\frac{2 f_{1} f_{2}}{f_{1}+2}$
(C) $f_{1}-f_{2}$
(D) $f_{1}+f_{2}$

Sol. A

$\frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{f_{2}}=\frac{1-\mu_{1}}{R}+\frac{\mu_{2}-1}{R}$
16. A parallel plate capacitor with plates of area $1 \mathrm{~m}^{2}$ each are at a separation of 0.1 m . If the elctric field between the plates is 100 N/C, the magnitude of charge on each plate is -
(Take $\epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N}-\mathrm{m}^{2}}$)
(A) $9.85 \times 10^{-10} \mathrm{C}$
(B) $8.85 \times 10^{-10} \mathrm{C}$
(C) $6.85 \times 10^{-10} \mathrm{C}$
(D) $7.85 \times 10^{-10} \mathrm{C}$

Sol. B
$E=\frac{\sigma}{\epsilon_{0}}=\frac{Q}{A \epsilon_{0}}$
$\mathrm{Q}=\mathrm{AE} \epsilon_{0}$
$\mathrm{Q}=(1)(100)\left(8.85 \times 10^{-12}\right)$
$\mathrm{Q}=8.85 \times 10^{-10} \mathrm{C}$
17. A block kept on a rough inclined plane, as shown in the figure, remains at rest upto a maximum force 2 N down the inclined plane. The maximum external force up the inclined plane that does not move the block is 10 N . The coefficient of static friction between the block and the plane is [Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$]

(A) $\frac{2}{3}$
(B) $\frac{1}{2}$
(C) $\frac{\sqrt{3}}{4}$
(D) $\frac{\sqrt{3}}{2}$

Sol. D
$2+\mathrm{mg} \sin 30=\mu \mathrm{mg} \cos 30^{\circ}$
$10=\mathrm{mg} \sin 30+\mu \mathrm{mg} \cos 30^{\circ}$
$=2 \mu \mathrm{mg}$ cos $30-2$
$6=\mu \mathrm{mg} \cos 30$
$4=\mathrm{mg} \sin 30$
$\frac{3}{2}=\mu \times \sqrt{3}$
$\mu=\frac{\sqrt{3}}{2}$
18. The charge on a capacitor plate in a circuit, as a function of time, is shown in the figure -

What is the value of current at $t=4 \mathrm{~s}$?
(A) $1.5 \mu \mathrm{~A}$
(B) $2 \mu \mathrm{~A}$
(C) zero
(D) $3 \mu \mathrm{~A}$

Sol. C

19. A simple harmonic motion is represented by:
$y=5(\sin 3 \pi t+\sqrt{3} \cos 3 \pi t) c m$
The amplitude and time period of the motion are -
(A) $10 \mathrm{~m}, \frac{3}{2} \mathrm{~s}$
(B) $5 \mathrm{~cm}, \frac{3}{2} \mathrm{~s}$
(C) $5 \mathrm{~cm}, \frac{2}{3} \mathrm{~s}$
(D) $10 \mathrm{~cm}, \frac{2}{3} \mathrm{~s}$

Sol. D

$y=5\lfloor\sin (3 \pi t)+\sqrt{3} \cos (3 \pi t)\rfloor$
$=10 \sin \left(3 \pi \mathrm{t}+\frac{\pi}{3}\right)$
Amplitude $=10 \mathrm{~cm}$
$\mathrm{T}=\frac{2 \pi}{\mathrm{~W}}=\frac{2 \pi}{3 \pi}=\frac{2}{3} \mathrm{sec}$
20. An alpha-particle of mass m suffers 1-dimensional elastic collision with a nucleus at rest of unknown mass. It is scattered directly backwards losing, 64% of its initial kinetic energy. The mass of the nucleus is -
(A) 1.5 m
(B) 2 m
(C) 3.5 m
(D) 4 m

Sol. D

$m v_{0}=m v_{2}-m v_{1}$
$\frac{1}{2} m V_{1}{ }^{2}=0.36 \times \frac{1}{2} m V_{0}{ }^{2}$
$\mathrm{v}_{1}=0.6 \mathrm{v}_{0}$
$\frac{1}{2} \mathrm{MV}_{2}{ }^{2}=0.64 \times \frac{1}{2} \mathrm{mV}_{0}{ }^{2}$
$\mathrm{V}_{2}=\sqrt{\frac{\mathrm{m}}{\mathrm{M}}} \times 0.8 \mathrm{~V}_{0}$
$m V_{0}=\sqrt{m M} \times 0.8 V_{0}-m \times 0.6 V_{0}$
$\Rightarrow 1.6 \mathrm{~m}=0.8 \sqrt{\mathrm{mM}}$
$4 \mathrm{~m}^{2}=\mathrm{mM}$
21. Two particles A, B are moving on two concentric circles of radii R_{1} and R_{2} with equal angular speed ω. At $t=0$, their positions and direction of motion are shown in the figure -

The relative velocity $\vec{v}_{A}-\vec{v}_{B}$ at $t=\frac{\pi}{2 \omega}$ is given by -
(A) $\omega\left(R_{2}-R_{1}\right) \hat{i}$
(B) $\omega\left(R_{1}-R_{2}\right) \hat{i}$
(C) $-\omega\left(R_{1}+R_{2}\right) \hat{i}$
(D) $\omega\left(R_{1}+R_{2}\right) \hat{i}$

Sol. A
$\theta=\omega t=\omega \frac{\pi}{2 \omega}=\frac{\pi}{2}$

$\vec{V}_{A}-\vec{V}_{S}=\omega R_{1}(-\hat{i})-\omega R_{2}(-i)$
22. The moment of inertia of a solid sphere, about an axis parallel to its diameter and at a distance of x from it, is ' $I(x)$ '. Which one of the graphs represents the variation of $I(x)$ with x correctly ?
(A)

(B)

(C)

(D)

Sol. C
$I_{c m}=\frac{2}{5} m R^{2}+m x^{2}$
Parabola opening up.
(At $x=0, I=\frac{2}{5} m R^{2}$)

JEE MAIN_12 Jan 2019 _ Evening

23. In the circuit shown, find C if the effective capacitance of the whole circuit is to be $0.5 \mu \mathrm{~F}$. All values in the circuit area in $\mu \mathrm{F}$.

(A) $\frac{6}{5} \mu \mathrm{~F}$
(B) $\frac{7}{10} \mu \mathrm{~F}$
(C) $\frac{7}{11} \mu \mathrm{~F}$
(D) $4 \mu \mathrm{~F}$

Sol. C

\Rightarrow A
From equs.,
$\frac{\frac{7 C}{3}}{\frac{7}{3}+C}=\frac{1}{2}$
$\Rightarrow 14 C=7+3 C$
$\Rightarrow C=\frac{7}{11}$
24. A galvanometer, whose resistance is 50 ohm, has 25 divisions in it. When a current of $4 \times 10^{-4} \mathrm{~A}$ passes through it, its needle (pointer) deflects by one division. To use this galvanometer as a voltmeter of range 2.5 V , it should be connected to a resistance of -
(A) 250 ohm
(B) 6250 ohm
(C) 200 ohm
(D) 6200 ohm

Sol. C
$\mathrm{I}_{\mathrm{g}}=4 \times 10^{-4} \times 25=10^{-2} \mathrm{~A}$

$2.5=(50+\mathrm{R}) 10^{-2} \quad \therefore \mathrm{R}=200 \Omega$
25. A load of mass $M \mathrm{~kg}$ is suspended from a steel wire of length 2 m and radius 1.0 mm in Searle's apparatus experiment. The increase in length produced in the wire is 4.0 mm . Now the load is fully immersed in a liquid of relative density 2 . The relative density of the material of load is 8 . The new value of increase in length of the steel wire is -
(A) 3.0 mm
(B) zero
(C) 5.0 mm
(D) 4.0 mm

Sol. A

$\frac{F}{A}=y \cdot \frac{\Delta \ell}{\ell}$
$\Delta \ell=F$
$\mathrm{T}=\mathrm{mg}$
$T=m g-f_{B} \quad=m g-\frac{m}{\rho_{b}} . \rho_{\ell} g$
$=\left(1-\frac{\rho_{\ell}}{\rho_{\mathrm{b}}}\right) \mathrm{mg}$
$=\left(1-\frac{2}{8}\right) \mathrm{mg}$
$\mathrm{T}=\frac{3}{4} \mathrm{mg}$
From (i)
$\frac{\Delta \ell}{\Delta \ell}=\frac{\mathrm{T}^{\prime}}{\mathrm{T}}=\frac{3}{4}$
$\Delta \ell^{\prime}=\frac{3}{4} \cdot \Delta \ell=3 \mathrm{~mm}$
26. The mean intensity of radiation on the surface of the Sun is about $10^{8} \mathrm{~W} / \mathrm{m}^{2}$. The rms value of the corresponding magnetic field is closest to -
(A) $10^{-2} \mathrm{~T}$
(B) 1 T
(C) $10^{2} \mathrm{~T}$
(D) $10^{-4} \mathrm{~T}$

Sol. D
$\mathrm{I}=\varepsilon_{0} \mathrm{CE}^{2}{ }_{\text {rms }}$
$\& E_{r m s}=c B_{r m s}$
$\mathrm{I}=\varepsilon_{0} \mathrm{C}^{3} \mathrm{~B}^{2}{ }_{\mathrm{rms}}^{\mathrm{rms}}$
$B_{r m s}=\sqrt{\frac{I}{\epsilon_{0} C^{3}}}$
$\mathrm{B}_{\mathrm{rms}} \approx 10^{-4}$
27. Let I, r, c and v represent inductance, resistance, capacitance and voltage, respectively. The dimension of $\frac{1}{\mathrm{rcv}}$ in Si units will be -
(A) [LTA]
(B) $\left[\mathrm{A}^{-1}\right]$
(C) $\left[\mathrm{LT}^{2}\right]$
(D) $\left[\mathrm{LA}^{-2}\right]$

Sol. B

$$
\left[\frac{\ell}{r}\right]=\mathrm{T}
$$

$[\mathrm{CV}]=\mathrm{AT}$
So, $\left[\frac{\ell}{\mathrm{rCV}}\right]=\frac{\mathrm{T}}{\mathrm{AT}}=\mathrm{A}^{-1}$

JEE MAIN_12 Jan 2019 _ Evening

28. A long cylindrical vessel is half filled with a liquid,. When the vessel is rotated about its own vertical axis, the liquid rises up near the wall. If the radius of vessel is 5 cm and its rotational speed is 2 rotations per second, then the difference in the heights between the centre and the sides, in cm, will be -
(A) 0.4
(B) 1.2
(C) 0.1
(D) 2.0

Sol. D

$y=\frac{\omega^{2} H^{2}}{2 g}=\frac{(2 \times 2 \pi)^{2} \times(0.05)^{2}}{20} \simeq 2 \mathrm{~cm}$
29. A resonance tube is old and has jagged end. It is still used in the laboratory to determine velocity of sound in air. A tuning fork of frequency 512 Hz produces first resonance when the tube is filled with water to a mark 11 cm below a reference mark, near the open end of the tube. The experiment is repeated with another fork of frequency 256 Hz which produces first resonance when water reaches a mark 27 cm below the reference mark. The velocity of sound in air, obtained in the experiment, is close to -
(A) $322 \mathrm{~ms}^{-1}$
(B) $341 \mathrm{~ms}^{-1}$
(C) $335 \mathrm{~ms}^{-1}$
(D) $328 \mathrm{~ms}^{-1}$

Sol. D

30. A vertical closed cylinder is separated into two parts by a frictionless piston of mass mand of negligible thickness. The piston is free to move along the length of the cylinder. The length of the cylinder above the piston is I_{1}, and that below the piston is I_{2}, such that $I_{1}>I_{2}$. Each part of the cylinder contains n moles of an ideal gas at equal temperature T. If the piston is stationary, its mass, m, will be given by -
(R is universal gas constant and g is the acceleration due to gravity)
(A) $\frac{R T}{n g}\left[\frac{l_{1}-3 I_{2}}{l_{1} I_{2}}\right]$
(B) $\frac{n R T}{g}\left[\frac{l_{1}-I_{2}}{l_{1} I_{2}}\right]$
(C) $\frac{R T}{g}\left[\frac{1}{I_{2}}+\frac{1}{I_{1}}\right]$
(D) $\frac{R T}{g}\left[\frac{2 l_{1}+I_{2}}{l_{1} l_{2}}\right]$

Sol. D

$P_{2} A=P_{1} A+m g$
$\frac{\mathrm{nRT} . \mathrm{A}}{\mathrm{A} \ell}=\frac{\mathrm{nRT} \cdot \mathrm{A}}{\mathrm{A} \ell_{1}}+\mathrm{mg}$
$\mathrm{nRT}\left(\frac{1}{\ell_{2}}-\frac{1}{\ell_{1}}\right)=\mathrm{mg}$
$\mathrm{m}=\frac{\mathrm{nRT}}{\mathrm{g}}\left(\frac{\ell_{1}-\ell_{2}}{\ell_{1} \cdot \ell_{2}}\right)$

