

Nurturing potential through education H.O. : 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in $\mid \boxtimes$: info@motion.ac.in

[CHEMISTRY]

1. The volume of gas A is twice than that of gas B. The compressibility factor of gas A is thrice than that of gas B at same temperature. The pressure of the gases for equal number of moles are :
(A) $P_{A}=2 P_{B}$
(B) $3 P_{A}=2 P_{B}$
(C) $2 \mathrm{P}_{\mathrm{A}}=3 \mathrm{P}_{\mathrm{B}}$
(D) $P_{A}=3 P_{B}$

Sol. C
$\mathrm{V}_{\mathrm{A}}=2 \mathrm{~V}_{\mathrm{B}}$
$Z_{A}=3 Z_{B}$
$\frac{P_{A} V_{A}}{n_{A} R T_{A}}=\frac{3 \cdot P_{B} \cdot V_{B} q}{n_{B} \cdot R T_{B}}$
$=2 P_{A}=3 P_{B}$
2. The increasing order of reactivity of the following compounds towards reaction with alkyl halides directly is :

(A) $($ A $)<$ (B) $<$ (C) $<$ (D)
(B) (B) $<$ (A) $<$ (C) $<$ (D)
(C) $($ B $)<($ A $)<($ D $)<$ (C)
(D) $($ A $)<$ (C) $<$ (D) $<$ (B)

Sol. B
Nucleophilicity order

3.

(A) $\mathrm{HCHO}+\mathrm{PhCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{MgX}$
(B) $\mathrm{PhCOCH}_{2} \mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{MgX}$
(C) $\mathrm{PhCOCH}_{3}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgX}$
(D) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}+\mathrm{PhMgX}$

Sol. A

4. Two solids dissociate as follows

$$
\begin{aligned}
& A(\mathrm{~s})=\mathrm{B}(\mathrm{~g})+\mathrm{C}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{p} 1}=\mathrm{x} \cdot \mathrm{~atm}^{2} \\
& \mathrm{D}(\mathrm{~s})=\mathrm{C}(\mathrm{~g})+\mathrm{E}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{p} 2}=\mathrm{y} \cdot \mathrm{~atm}^{2}
\end{aligned}
$$

The total pressure when both the solids dissociate simultaneously is :
(A) $(x+y)$ atm
(B) $x^{2}+y^{2}$ atm
(C) $\sqrt{x+y} \mathrm{~atm}$
(D) $2(\sqrt{x+y}) \mathrm{atm}$

Sol. D
$A \rightleftharpoons B(g)+C(g) K_{P_{1}}=x=P_{B} \cdot P_{C}$
$\begin{array}{lll}P_{1} & P_{1} & x=P_{1}\left(P_{1}+P_{2}\right)\end{array}$
$D(s) \rightleftharpoons C(g)+E(g) \quad E_{P_{2}}=y=P_{C} . P_{E}$

$$
\begin{equation*}
P_{2} \quad P_{2} \quad y=\left(P_{1}+P_{2}\right)\left(P_{2}\right) \tag{2}
\end{equation*}
$$

Adding (1) and (2)
$x+y=\left(P_{1}+P_{2}\right)^{2}$
Now total pressure
$P_{T}=P_{C}+P_{B}+P_{E}$

$$
=\left(P_{1}+P_{2}\right)+P_{1}+P_{2}=2\left(P_{1}+P_{2}\right)
$$

$P_{T}=2(\sqrt{x+y})$
5. In the Hall-Heroult process, aluminium is formed at the cathode. The cathode is made out of :
(A) Copper
(B) Platinum
(C) Pure aluminium
(D) Carbon

Sol. D
In the Hall-Heroult process the cathode is made of carbon.
6. The major product of the following reaction is :

(A)

(B)

(C)

(D)

Sol. D

DIBAL-H will reduce cyanides \& esters to aldehydes.
7. The molecule that has minimum/no role in the formation of photochemical smog, is:
(A) O_{3}
(B) N_{2}
(C) $\mathrm{CH}_{2}=\mathrm{O}$
(D) NO

Sol. B
Chiefly $\mathrm{NO}_{2}, \mathrm{O}_{3}$ and hydrocarbon are responsible for build up smog.
8. The metal d-orbitals that are directly facing the ligands in $\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$ are :
(A) $d_{x y}$ and $d_{x-y}{ }^{2}$
(B) $d_{x-y}{ }^{2}{ }^{2}$ and $d_{z}{ }^{2}$
(C) $d_{x y}, d_{x z}$ and $d_{y z}$
(D) $d_{x z}, d_{y z}$ and $d_{z}{ }^{2}$

Sol. B
$\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
$\mathrm{Co}^{+3} \rightarrow[\mathrm{Ar}]_{18} 3 \mathrm{~d}^{6}$

9. A metal on combustion in excess air forms X. X upon hydrolysis with water yields $\mathrm{H}_{2} \mathrm{O}_{2}$ and O_{2} along with another product. The metal is :
(A) Rb
(B) Mg
(C) Na
(D) Li

Sol. A
$\mathrm{Rb}+\mathrm{O}_{2 \text { (excess) }} \longrightarrow \mathrm{RbO}_{2}$
$2 \mathrm{RbO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{RbOH}+\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{2}$
10. Freezing point of a 4% aqueous solution of X is equal to freezing point of 12% aqueous solution of Y. If molecular weight of X is A, then molecular weight of X is A, then molecular weight of Y is :
(A) 3 A
(B) A
(C) 4 A
(D) 2 A

Sol. A
For same freezing point, molality of both solution should be same.
$m_{x}=m_{y}$
$\frac{4 \times 1000}{96 \times M_{x}}=\frac{12 \times 1000}{88 \times M_{y}}$
or, $M_{y}=\frac{96 \times 12}{4 \times 88} M_{x}=3.27 \mathrm{~A}$
Closest option is 3 A .
11. Decomposition of X exhibits a rate constant of $0.05 \mu \mathrm{~g} /$ year. How many years are required for the decomposition of $5 \mu \mathrm{~g}$ of X into $2.5 \mu \mathrm{~g}$?
(A) 50
(B) 25
(C) 40
(D) 20

Sol. A
Rate constant (K) $=0.05 \mu \mathrm{~g} /$ year
means zero order reaction
$t_{1 / 2}=\frac{a_{0}}{2 K}=\frac{5 \mu \mathrm{~g}}{2 \times 0.05 \mu \mathrm{~g} / \text { year }}=50$ year
12. The element with $Z=120$ (not yet discovered) will be an/a :
(A) alkali metal
(B) alkaline earth metal
(C) transition metal
(D) inner-transition metal

Sol. B
$Z=120$
Its general electronic configuration may be represented as [Nobal gas] ns2, like other alkaline earth metals.
13. What is the work function of the metal if the light of wavelength $4000 \AA$ generates photoelectrons of velocity $6 \times 10^{5} \mathrm{~ms}^{-1}$ from it ?
Mass of electron $=9 \times 10^{-31} \mathrm{~kg}$
Velocity of light $=3 \times 10^{8} \mathrm{~ms}^{-1}$
Planck's constant $=6.626 \times 10^{-34} \mathrm{Js}$
Charge of electron $=1.6 \times 10^{-19} \mathrm{JeV}^{-1}$)
(A) 2.1 eV
(B) 0.9 eV
(C) 3.1 eV
(D) 4.0 eV

Sol. A
$h v=\phi+h v^{0}$
$\frac{1}{2} \mathrm{mv}^{2}=\mathrm{hc}\left(\frac{1}{\lambda}+\frac{1}{\lambda_{0}}\right)$
$h v=\phi+\frac{1}{2} m v^{2}$
$\phi=\frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{4000 \times 10^{-10}}-\frac{1}{2} \times 9 \times 10^{-31} \times\left(6 \times 10^{5}\right)^{2}$
$\phi=3.35 \times 10^{-19} \mathrm{~J} \Rightarrow \phi \simeq 2.1 \mathrm{eV}$
14. The pair of metal ions that can give a spin only magnetic moment of 3.9 BM for the complex $\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$, is :
(A) Co^{2+} and Fe^{2+}
(B) V^{2+} and Fe^{2+}
(C) V^{2+} and Co^{2+}
(D) Cr^{2+} and Mn^{2+}

Sol. C
V^{2+} and Co^{2+}
$\mathrm{V}^{2+} \rightarrow\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2} ;[\mathrm{Ar}]_{18}$

3 unpaired e^{-}, spin only
magnetic moment
$=3.89$ В. M .
$\mathrm{Co}^{2+} \rightarrow\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2} ;\left[\mathrm{Ar}_{18} \begin{array}{|l|l|l|l|l|}\hline 1 \mathrm{~L} & 1 \mathrm{~L} & 1 & 1 & 1 \\ \hline 3 \mathrm{~d}^{7} & \\ \hline\end{array}\right.$
3 unpaired e^{-}, spin only
magnetic moment
$=3.89$ B.M.
15. Among the following four aromatic compounds, which one will have the lowest melting point ?
(A)

(B)

(C)

(D)

Sol. D
M.P. of Napthalene $\simeq 80^{\circ} \mathrm{C}$
16. The major product of the following reaction is:

(A)

(B)

(C)

(D)

Sol. C

17. For a diatomic ideal gas in a closed system, which of the following plots does not correctly discribe the recation between various thermodynamics quantities?
(A)

(B)

(C)

(D)

Sol. A
At higher temperature, rotational degree of freedom becomes active.
$C_{P}=\frac{7}{2} R \quad$ (Independent of P)
$\mathrm{C}_{\mathrm{v}}=\frac{5}{2} \mathrm{R} \quad$ (Independent of V)
Variation of U vs T is similar as C_{V} vs T.
18. 50 mL of 0.5 M oxalic acid is needed to neutralize 25 mL of sodium hydroxide solution. The amount of NaOH in 50 mL of the given sodium hydroxide solution is:
(A) 10 g
(B) 80 g
(C) 40 g
(D) 20 g

Sol. Bonus

$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{m}_{\text {eq }}$ of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=\mathrm{m}_{\mathrm{eq}} \mathrm{NaOH}$
$50^{2 q} \times 0.5^{\times 2}=25^{\mathrm{eq}} \times \mathrm{MNaOH} \times 1$
$\therefore \mathrm{M}_{\mathrm{NaOH}}=2 \mathrm{M}$
Now 1000 ml solution $=2 \times 40$ gram NaOH
$\therefore 50 \mathrm{ml}$ solution $=4 \mathrm{gram} \mathrm{NaOH}$
19. The correct order for acid strength of compounds
$\mathrm{CH}=\mathrm{CH}, \mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}$ and $\mathrm{CH}_{3}=\mathrm{CH}_{2}$
is as follows :
(A) $\mathrm{CH} \equiv \mathrm{CH}>\mathrm{CH}_{2}=\mathrm{CH}_{2}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}$
(B) $\mathrm{HC} \equiv \mathrm{CH}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>\mathrm{CH}_{2}=\mathrm{CH}_{2}$
(C) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>\mathrm{CH}_{2}=\mathrm{CH}_{2}>\mathrm{HC} \equiv \mathrm{CH}$
(D) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>\mathrm{CH} \equiv \mathrm{CH}>\mathrm{CH}_{2} \equiv \mathrm{CH}_{2}$

Sol. B
$\mathrm{CH} \equiv \mathrm{CH}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>\mathrm{CH}_{2}=\mathrm{CH}_{2}$
(Acidic strength order)
20. Water samples with BOD values of 4 ppm and 18 ppm , respectively, are :
(A) Highly polluted and Highly polluted
(B) Clean and Clean
(C) Clean and Highly polluted
(D) Highly polluted and Clean

Sol. C
Clean water would have BOD value of less than 5 ppm whereas highly polluted water could have a BOD value of 17 ppm or more.
21. $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ is an organometallic compound due to the presence of :
(A) $\mathrm{Mn}-\mathrm{C}$ bond
(B) $\mathrm{Mn}-\mathrm{O}$ bond
(C) C-O bond
(D) Mn-Mn bond

Sol. A
Compounds having at least one bond between carbon and metal are known as organometallic compounds.

22. In the following reaction

Aldehyde + Alcohol	
Aldehyde HCHO	Alcohol $\mathrm{CH}_{3} \mathrm{CHO}$
$\mathrm{t}_{\mathrm{BuOH}}$	
$\mathrm{H}_{3} \mathrm{CH}$	

The best combination is :
(A) $\mathrm{CH}_{3} \mathrm{CHO}$ and $\mathrm{t}_{\text {вuон }}$
(B) HCHO and MeOH
(C) $\mathrm{CH}_{3} \mathrm{CHO}$ and MeOH
(D) HCHO and $\mathrm{t}_{\text {вион }}$

Sol. B

acetal
rate $\propto \frac{1}{\text { steric crowding of aldehyde }}$
t-butanol can show formation of carbocation in acidic medium
23. Poly- β hydroxybutyrate-co- β -
hydroxyvalerate(PHBV) is a copolymer of \qquad _.
(A) 3-hydroxybutanoic acid and 4-hydroxypentanoic acid
(B) 2-hydroxybutanoic acid and 3-hydroxypentanoic acid
(C) 3-hydroxybutanoic acid and 2-hydroxypentanoic acid
(D) 3-hydroxybutanoic acid and 3-hydroxypentanoic acid

Sol. D
PHBV is a polymer of 3-hydroxybutanoic acid and 3-Hydroxy pentanoic acid.
24. In the following reactions, products A and B are :

$[\mathrm{A}] \xrightarrow[\Delta]{\mathrm{H}_{3} \mathrm{O}^{+}}[\mathrm{B}]$
(A)

(B)

(C)

(D)

Sol. C

(B)
25. Iodine reacts with concentrated HNO_{3} to yield Y along with other products. The oxidation state of iodine in Y , is :
(A) 5
(B) 1
(C) 3
(D) 7

Sol. A
$\mathrm{I}_{2}+10 \mathrm{HNO}_{3} \longrightarrow 2 \mathrm{HIO}_{3}+10 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
In HIO_{3} oxidation state of iodine is +5 .
26. Given

Gas	H_{2}	CH_{4}	CO_{2}	SO_{2}
Critical	33	190	304	630

Temperature/K
On the basis of data given above, predict which of the following gases shows least adsorption on a definite amount of charcoal ?
(A) SO_{2}
(B) CH_{4}
(C) CO_{2}
(D) H_{2}

Sol. D
Smaller the value of critical temperature of gas, lesser is the extent of adsorption. so least adsorbed gas is H_{2}
27. Among the following compounds most basic amino acid is :
(A) Asparagine
(B) Lysine
(C) Histidine
(D) Serine

Sol. B
Lysine
28. In a chemical reaction, $A+2 B \Longrightarrow \quad K \quad 2 C+D$, the initial concentration of B was 1.5 times of the concentration of A, but the equilibrium concentrations of A and B were found to be equal. The equillibrium concentrations of A and B were found to be equal. The equalibrium constant(K) for the aforesaid chemical reaction is :
(A) 16
(B) 1
(C) $1 / 4$
(D) 4

Sol.

	A	+	$2 B$	$2 C$	+
$t=0$	a_{0}		$1.5 a_{0}$	D	
$t=t_{\text {eq }}$	$a_{0}-x$		$1.5 a_{0}-2 x$		$2 x$

At equilibrium $[\mathrm{A}]=[\mathrm{B}]$
$a_{0}-x=1.5 a_{0}-2 x \Rightarrow x=0.5 a_{0}$
$K_{c}=\frac{[C]^{2}[D]}{[A][B]^{2}}=\frac{\left(a_{0}\right)^{2}\left(0.5 a_{0}\right)}{\left(0.5 a_{0}\right)\left(0.5 a_{0}\right)^{2}}=4$
29. The standard electrode potential $E \ominus$ and its temperature coeffiicient ($d E^{\ominus} / \mathrm{dT}$) for a cell are 2 V and $5 \times 10^{-4} \mathrm{VK}^{-1}$ at 300 K respectively. The cell reaction is
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$
The standard reaction enthalpy $\left(\Delta, \mathrm{H}^{\ominus}\right)$ at $300 \mathrm{~K} \mathrm{in} \mathrm{kJ} \mathrm{mol}^{-1}$ is,
[Use $\mathrm{R}=8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and $\mathrm{F}=96,000 \mathrm{C} \mathrm{mol}^{-1}$]
(A) -412.8
(B) -384.0
(C) 192.0
(D) 206.4

Sol. A

30. The hardness of a water sample (in terms of equivalent of CaCO_{3}) containing $10^{-3} \mathrm{M} \mathrm{CaSO}_{4}$ is : (molar mass of $\mathrm{CaSO}_{4}=136 \mathrm{~g} \mathrm{~mol}^{-1}$)
(A) 10 ppm
(B) 100 ppm
(C) 50 ppm
(D) 90 ppm

Sol. B
ppm of CaCO_{3}
$\left(10^{-3} \times 10^{3}\right) \times 100=100 \mathrm{ppm}$

