

20000 +

Motion
H.O.: 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in |区: info@motion.ac.in

1. The tangents to the curve $y=(x-2)^{2}-1$ at its points of intersection with the line $x-y=3$, intesect at the point :
(1) $\left(\frac{5}{2}, 1\right)$
(2) $\left(-\frac{5}{2},-1\right)$
(3) $\left(-\frac{5}{2}, 1\right)$
(4) $\left(\frac{5}{2},-1\right)$

Sol. 4
C: $x^{2}-4 x-y+3=0$
Coc: $x h-2(x+h)-\frac{1}{2}(y+k)+3=0$
Given line $x-y=3$
Compair Equation (1) and (2)
$\frac{h-2}{1}=\frac{-\frac{1}{2}}{-1}=\frac{-2 h-\frac{k}{2}+3}{-3}$
$h-2=\frac{1}{2}$
$h=\frac{5}{2}$
$2 h+\frac{k}{2}-3=\frac{3}{2}$
$\frac{k}{2}=3+\frac{3}{2}-2\left(\frac{5}{2}\right)$
$\frac{k}{2}=\frac{9}{2}-\frac{10}{2}$
$\mathrm{k}=-1$
$\Rightarrow(h, k)=(5 / 2,-1)$
2. A circle touching the x - axis at $(3,0)$ and making an intercept of length 8 on the y-axis passes through the point :
(1) $(1,5)$
(2) $(2,3)$
$(3)(3,10)$
$(4)(3,5)$

Sol. 3

हमारा विश्वास... हर एक विद्यार्यी है खुखास

$S_{1}:(x-3)^{2}+(y-5)^{2}=5^{2}$
\& $\quad S_{2}:(x-3)^{2}+(y+5)^{2}=5^{2}$
Check option
3. If ${ }^{20} \mathrm{C}_{1}+\left(2^{2}\right)^{20} \mathrm{C}_{2}+\left(3^{2}\right)^{20} \mathrm{C}_{3}+\ldots \ldots+\left(20^{2}\right)^{20} \mathrm{C}_{20}=\mathrm{A}\left(2^{\beta}\right)$, then the ordered pair (A, β) is equal to :
(1) $(420,19)$
(2) $(380,18)$
(3) $(420,18)$
(4) $(380,19)$

Sol. 3
$\mathrm{S}={ }^{20} \mathrm{C}_{1}+\left(2^{2}\right)^{20} \mathrm{C}_{2}+\left(3^{2}\right)^{20} \mathrm{C}_{3}+--+\left(20^{2}\right)^{20} \mathrm{C}_{20}$
$S=\sum_{r 21}^{20} r^{20} C_{r}$
$\mathrm{S}=20 \sum_{\mathrm{r}=1}^{20} \mathrm{r}^{19} \mathrm{C}_{\mathrm{r}-1}$
$S=20\left(\Sigma(r-1){ }^{19} C_{r-1}+{ }^{19} C_{r-1}\right)$
$S=\sum_{r=1}^{20}{ }^{18} C_{r-2}+\sum_{r=1}^{20}{ }^{19} C_{r-1}$
$S=20\left(19.2^{18}+2^{19}\right)$
$S=202^{18}(19+2)$
$S=21.5 .2^{20}$
$1 S=05.2^{20}=210.2^{19}=420.2^{18}=A 2^{\beta}$

$$
\begin{aligned}
& \Rightarrow A=420 \\
& \beta=18
\end{aligned}
$$

4. The Boolean expression $\sim(\mathrm{p} \Rightarrow(\sim \mathrm{q}))$ is equivalent to :
(1) $p \vee q$
(2) $p \wedge q$
(3) $q \Rightarrow \sim p$
(4) $(\sim p) \Rightarrow q$

Sol. 2

p	q	$\sim \mathrm{q}$	$\mathrm{p} \rightarrow \sim \mathrm{q}$	$\sim(\mathrm{p} \rightarrow \sim \mathrm{q})$
T	T	F	F	T
T	F	T	T	F
F	T	F	T	F
F	F	T	T	F

p	q	$\mathrm{p} \wedge \mathrm{q}$
T	T	T
T	F	F
F	T	F
F	F	F

5. If $a_{1}, a_{2}, a_{3}, \ldots$ are in A.P. such that $a_{1}+a_{7}+a_{16}=40$, then the sum of the first 15 terms of this A.P. is :
(1) 280
(2) 120
(3) 200
(4) 150

Sol. 3

$$
\begin{array}{ll}
a_{1}+a_{7}+a_{16}=40 & \text { Sum of } 1^{\text {st }} 15 \text { terms } \\
3 a+6 d+15 d=40 & \Rightarrow S=\frac{15}{2}[2 a+14 d] \\
3 a+21 d=40 & \Rightarrow S=\frac{15}{2}\left|40 \cdot \frac{2}{3}\right|
\end{array}
$$

हमारा विश्वास... हर एक विद्यार्यी है खुखास

$$
\begin{array}{ll}
\frac{3}{2}[2 a+14 d]=40 & \Rightarrow S=40 \times 5 \\
& \Rightarrow S=200
\end{array}
$$

6. If $[x]$ denotes the greatest integers $\leq x$, thenthe system of linear equations $[\sin \theta] x+[-\cos \theta] y=0$ $\&[\cot \theta] x+y=0$.
(1) have infinitely many solutions if $\theta \in\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)$ and has a unique solutions if $\theta \in\left(\pi, \frac{7 \pi}{6}\right)$
(2) has a unique solution if $\theta \in\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right) \cup\left(\pi, \frac{7 \pi}{6}\right)$
(3) have infinitely, many solutions if $\theta \in\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right) \cup\left(\pi, \frac{7 \pi}{6}\right)$
(4) has a unique solution if $\theta \in\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)$ and have infinitely many solutions if $\theta \in\left(\pi, \frac{7 \pi}{6}\right)$

Sol. 1
$x[\operatorname{Sin} \theta]+[-\operatorname{Cos} \theta] y=0$
$x[\operatorname{Cot} \theta]+y=0$
For ∞ Solu.
$\Delta=\left|\begin{array}{cc}{[\operatorname{Sin} \theta]} & {[-\operatorname{Cos} \theta]} \\ {[\operatorname{Cot} \theta]} & 1\end{array}\right|=0$
$\Delta=[\operatorname{Sin} \theta]-[\operatorname{Cot} \theta][-\operatorname{Cos} \theta]=0$
(i) $\theta \in\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right) \Rightarrow \Delta=0$
$\& \theta \in\left(\pi, \frac{7 \pi}{6}\right) \Rightarrow \Delta \neq 0$
7. For an initial screening of an admission test, a candidate is given fifty problems to solve. If the probability that the candidate can solve any problem is $\frac{4}{5}$, then the probability that he is unable to solve less than two problems is:
(1) $\frac{316}{25}\left(\frac{4}{5}\right)^{48}$
(2) $\frac{201}{5}\left(\frac{1}{5}\right)^{49}$
(3) $\frac{164}{25}\left(\frac{1}{5}\right)^{48}$
(4) $\frac{54}{5}\left(\frac{4}{5}\right)^{49}$

Sol. 4
$(50$ Solve +0 unsolve $)+(49$ Solve +1 unsolve $)$
$={ }^{50} \mathrm{C}_{50}\left(\frac{4}{5}\right)^{50}+{ }^{50} \mathrm{C}_{49}\left(\frac{4}{5}\right)^{49} \cdot \frac{1}{5}$
$=\left(\frac{4}{5}\right)^{50}+50 \cdot\left(\frac{4}{5}\right)^{49} \cdot \frac{1}{5}$

$$
\begin{aligned}
& =\left(\frac{4}{5}\right)^{50}+10 \cdot\left(\frac{4}{5}\right)^{49} \\
& =\left(\frac{4}{5}+10\right)\left(\frac{4}{5}\right)^{49} \\
& =\frac{54}{5}\left(\frac{4}{5}\right)^{49}
\end{aligned}
$$

8. The equation of a common tangent to the curves, $y^{2}=16 x$ and $x y=-4$, is :

Sol. 4
(1) $x+y+4=0$
(2) $2 x-y+2=0$
(3) $x-2 y+16=0$
(4) $x-y+4=0$
$C_{1}: y^{2}=16 x$
\&
$C_{2}: x y_{2}=-4$
T to C_{1} :
$y=m x+\frac{4}{m}$ solve with $x y=-4$

$$
m x^{2}+\frac{4 x}{m}+4=0
$$

$$
\text { For C.T. } \Rightarrow \mathrm{D}=0
$$

$$
\left(\frac{4}{m}\right)^{2}-4 \cdot m \cdot 4=0
$$

$$
\frac{1}{m^{2}}-m=0
$$

$$
m=1
$$

C.T. $y-x=4$

9. let $z \in C$ with $\operatorname{Im}(z)=10$ and it satisfies $\frac{2 z-n}{2 z+n}=2 i-1$ for some natural number n, then :
(1) $n=40$ and $\operatorname{Re}(z)=10$
(2) $n=20$ and $\operatorname{Re}(z)=10$
(3) $n=20$ and $\operatorname{Re}(z)=-10$
(4) $n=40$ and $\operatorname{Re}(z)=-10$

Sol. 4
$\operatorname{Im}(z)=10$
$\frac{2 z-n}{2 z+n}+1=2 i$
$\frac{2 z-n+2 z+n}{2 z+n}=2 i$
$\frac{2 z}{2 z+n}=i$
$2 x+20 i=2 x i+n i-20$ Compair real \&img. Part
$2 x=-20 \quad 20=2 x+n$
$x=-10 \& n=40$.
10. An ellipse, with foci at $(0,2)$ and $(0,-2)$ and minor axis of length 4 , passes through which of the following points ?
(1) $(\sqrt{2}, 2)$
(2) $(1,2 \sqrt{2})$
(3) $(2,2 \sqrt{2})$
(4) $(2, \sqrt{2})$

Sol. 1
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
E : $\frac{x^{2}}{4}+\frac{y^{2}}{8}=1$
$a^{2}=4$
$2 \mathrm{be}=4$
$e^{2}=1-\frac{a^{2}}{b^{2}}$
$b^{2} e^{2}=b^{2}-a^{2}$
$4=b^{2}-4$
$b^{2}=8$

11. A value of $\theta \in(0, \pi / 3)$, for which $\left|\begin{array}{ccc}1+\cos ^{2} \theta & \sin ^{2} \theta & 4 \cos 6 \theta \\ \cos ^{2} \theta & 1+\sin ^{2} \theta & 4 \cos 6 \theta \\ \cos ^{2} \theta & \sin ^{2} \theta & 1+4 \cos 6 \theta\end{array}\right|=0$, is :
(1) $\frac{\pi}{9}$
(2) $\frac{\pi}{18}$
(3) $\frac{7 \pi}{24}$
(4) $\frac{7 \pi}{36}$

Sol. 1

$\left|\begin{array}{lll}1+\cos ^{2} \theta & \operatorname{Sin}^{2} \theta & 4 \operatorname{Cos} 6 \theta \\ \operatorname{Cos}^{2} \theta & 1+\operatorname{Sin}^{2} \theta & 4 \operatorname{Cos} 6 \theta \\ \operatorname{Cos}^{2} \theta & \operatorname{Sin}^{2} \theta & 1+4 \operatorname{Cos} 6 \theta\end{array}\right|=0$
$R_{3} \rightarrow R_{3}-R_{1}, \quad R_{2} \rightarrow R_{2}-R_{1}$
$\left|\begin{array}{lcc}1+\cos ^{2} \theta & \operatorname{Sin}^{2} \theta & 4 \operatorname{Cos} 6 \theta \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right|=0$
$\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$
$\left|\begin{array}{ccc}1+\operatorname{Cos}^{2} \theta & 2 & 4 \operatorname{Cos} 6 \theta \\ -1 & 0 & 0 \\ -1 & -1 & 1\end{array}\right|=0$
$1[2+4 \operatorname{Cos} 6 \theta]=0$
$\operatorname{Cos} 6 \theta=-\frac{1}{2}$
$6 \theta=2 \frac{\pi}{3} ; \theta=\frac{\pi}{9}$
12. Let $\alpha \in R$ and the three vectors $\vec{a}=\alpha \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}+\hat{j}-\alpha \hat{k}$ and $\vec{c}=\alpha \hat{i}-2 \hat{j}+3 \hat{k}$. Then the set $S=\{\alpha: \vec{a}, \vec{b}$ and \vec{c} are coplanar $\}$
(1) is empty
(2) contains exactly two numbers only one of which is positive
(3) is singleton
(4) contains exactly two positive numbers

Sol. 1
$\vec{a}, \vec{b}, \vec{c}$ are coplaner
$[\bar{a} \bar{b} \bar{C}]=0$
$\left|\begin{array}{ccc}\alpha & 1 & 3 \\ 2 & 1 & -\alpha \\ \alpha & -2 & 3\end{array}\right|=0$
$\alpha(3-2 \alpha)-1\left(6+\alpha^{2}\right)+3(-4-\alpha)=0$
$3 \alpha-2 \alpha^{2}-6-\alpha^{2}-12-3 \alpha=0$
$-3 \alpha^{2}=18=\alpha^{2}=-6$
$\alpha \in \phi$
13. a triangle has a vertex at $(1,2)$ and the mid points of the two sides through it are $(-1,1)$ and $(2,3)$. Then the centroid of this triangle is:
(1) $\left(\frac{1}{3}, 1\right)$
(2) $\left(1, \frac{7}{3}\right)$
(3) $\left(\frac{1}{3}, \frac{5}{3}\right)$
(4) $\left(\frac{1}{3}, 2\right)$

Sol. 4

$\begin{array}{ll}x_{1}=-3 & x_{2}=3 \\ y_{1}=0 & y_{2}=4\end{array}$
$G=\frac{x_{1}+x_{2}+1}{3}, \frac{y_{1}+y_{2}+2}{3}$
Centroid $G=\left(\frac{1}{3}, 2\right)$
14. The angle of elevation of the top of vertical tower standing, on a horizontal plane is observed to be 45° from a point A on the plane. Let B be the point 30 m vertically above the point A. If the angle of elevation of the top of the tower from B be 30°, then the distance (in m) of the foot of the tower from the point A is :
(1) $15(5-\sqrt{3})$
(2) $15(3-\sqrt{3})$
(3) $15(3+\sqrt{3})$
(4) $15(1+\sqrt{3})$

Sol. 3

$\frac{h}{x}=\tan 45 \quad \& \quad \frac{h-30}{x}=\tan 30$
$h=x=\frac{x-30}{x}=\frac{1}{\sqrt{3}}$
$\sqrt{3} x-30 \sqrt{3}=x$
$x=\frac{30 \sqrt{3}}{\sqrt{3}-1}$
$x=15(\sqrt{3}+1) \sqrt{3}$
$x=15(3+\sqrt{3})$
15. If the area (in sq. units) bounded by the parabola $y^{2}=4 \lambda x$ and the line $y=\lambda x, \lambda>0$, is $\frac{1}{9}$, then λ is equal to :
(1) $4 \sqrt{3}$
(2) 24
(3) 48
(4) $2 \sqrt{6}$

Sol. 2

Fee ₹ 1500

Use fromula of Area
$A=\left|\begin{array}{ll}\frac{8}{3} & \frac{a^{2}}{m^{3}}\end{array}\right|$
$A=\left|\frac{8}{3} \cdot \frac{\lambda^{2}}{\lambda^{3}}\right|=\frac{1}{9}$
$\frac{1}{\lambda} \cdot \frac{8}{3}=\frac{1}{9}$
$\lambda=24$
16. Let $f(x)=5-|x-2|$ and $g(x)=|x+1|, x \in R$. If $f(x)$ attains maximum value at α and $g(x)$ attains minimum value at β, then $\lim _{x \rightarrow-\alpha \beta} \frac{(x-1)\left(x^{2}-5 x+6\right)}{x^{2}-6 x+8}$ is equal to
(1) $3 / 2$
(2) $-3 / 2$
(3) $-1 / 2$
(4) $1 / 2$

Sol. 4

$f(x)=5-|x-2|$
\&
$g(x)=|x-1|$
$\alpha=2$
$\beta=-1$
$\operatorname{\alpha t}_{x \rightarrow \beta \alpha} \frac{(x-1)(x-3)(x-2)}{(x-4)(x-2)}$
$\operatorname{\alpha t}_{x \rightarrow 2} \frac{(x-1)(x-3)}{(x-4)}=\frac{1 \cdot(-1)}{-2}=\frac{1}{2}$
17. A straight line L at a distance of 4 units from the origin makes positive intercepts on the coordinate axes and the perpendicular from the origin to this line makes an angle of 60° with the line $x+y=0$. Then an equation of the line L is :
(1) $(\sqrt{3}-1) x+(\sqrt{3}+1) y=8 \sqrt{2}$
(2) $x+\sqrt{3} y=8$
(3) $(\sqrt{3}+1) x+(\sqrt{3}-1) y=8 \sqrt{2}$
(4) $\sqrt{3} x+y=8$

Sol. 3

$\mathrm{L}: \mathrm{x} \operatorname{Cos} 15+y \sin 15=4$
$L: x . \frac{\sqrt{3}+1}{2 \sqrt{2}}+y \frac{\sqrt{3}-1}{2 \sqrt{2}}=4$
$L:(\sqrt{3}+1) x+(\sqrt{3}-1) y=8 \sqrt{2}$

हमारा विश्वास... हर एक विद्यार्यी है खुखास

18. Let $\alpha \in(0, \pi / 2)$ be fixed. If the integral $\int \frac{\tan x+\tan \alpha}{\tan x-\tan \alpha} d x=$
$A(x) \cos 2 \alpha+B(x) \sin 2 \alpha+C$, where C is a constant of integration, then the functions $A(x)$ and $B(x)$ are respectively :
(1) $x+\alpha$ and $\log _{e}|\sin (x-\alpha)|$
(2) $x-\alpha$ and $\log _{e}|\sin (x-\alpha)|$
(3) $x+\alpha$ and $\log _{e}|\sin (x+\alpha)|$
(4) $x-\alpha$ and $\log _{e}|\cos (x-\alpha)|$

Sol. 2
$\int \frac{\tan x+\tan \alpha}{\tan x-\tan \alpha} d \alpha$
$\int \frac{\sin (x+\alpha)}{\operatorname{Sin}(x-a)} d \alpha$
$x-\alpha=t$
$\int \frac{\sin (\mathrm{t}+2 \alpha)}{\operatorname{Sint}} \mathrm{dt}$
$\int \cos 2 \alpha \mathrm{dt}+\int \operatorname{Cott} \cdot \operatorname{Sin} 2 \alpha \mathrm{dt}$
$(x-\alpha) \operatorname{Cos} 2 \alpha+\operatorname{Sin} 2 \alpha$. In $\operatorname{Sin}|x-\alpha|+C$
$A(x)=(x-\alpha) \& B(x)=\operatorname{In} \operatorname{Sin}|x-\alpha|$
19. The length of the perpendicular drawn from the point $(2,1,4)$ to the plane containing the lines $\vec{r}=(\hat{i}+\hat{j})+\lambda(\hat{i}+2 \hat{j}-\hat{k})$ and $\vec{r}=(\hat{i}+\hat{j})+\mu(-\hat{i}+\hat{j}-2 \hat{k})$ is :
(1) $\frac{1}{\sqrt{3}}$
(2) $\sqrt{3}$
(3) 3
(4) $\frac{1}{3}$

Sol. 2
$\bar{n}_{p}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -1 \\ -1 & 1 & -2\end{array}\right|=\langle-3,+3,3\rangle$
A : $(1,1,10)$
P: $-3(x-1)+3(y-1)+3(Z)=0$
$P:-3 x+3 y+3 z+3-3=0$
P: $x-y-z=0$
Distance from $(2,1,4)$
$\mathrm{d}=\left|\frac{2-1-4}{\sqrt{1+1+1}}\right|=\sqrt{3}$
20. The derivative of $\tan ^{-1}\left(\frac{\sin x-\cos x}{\sin x+\cos x}\right)$, with respect to $\frac{x}{2}$, where $\left(x \in\left(0, \frac{\pi}{2}\right)\right)$ is:
(1) $\frac{1}{2}$
(2) 1
(3) 2
(4) $\frac{2}{3}$

Sol. 3

Let $f(x)=\tan ^{-1}\left(\frac{1-\operatorname{Cot} x}{1+\operatorname{Cot} x}\right) \quad x \in\left(0, \frac{\pi}{2}\right)$
$f(x)=-\tan ^{-1}\left(\frac{1-\tan x}{1+\tan x}\right)=-\tan ^{-1}\left(\tan \left(\frac{\pi}{4}-x\right)\right)$
$f(x)=-\left(\frac{\pi}{4}-x\right)$
$f(x)=x-\pi / 4$
\&
$g(x)=x / 2$
$\frac{\operatorname{df}(x)}{d g(x)}=\frac{1}{1 / 2}=2$
21. A palne which bisects the angle between the two given planes $2 x-y+2 z-4=0$ and $x+2 y+2 z-2=0$, passes through the point :
(1) $(1,-4,1)$
(2) $(2,4,1)$
(3) $(1,4,-1)$
(4) $(2,-4,1)$

Sol. 4
B : $\left|\frac{2 x-y+2 z-y}{3}\right|=\left|\frac{x-2 y+2 z-2}{3}\right|$
(+) $\quad B_{1}: 2 x-y+2 z-4=x+2 y+2 z-2$
(-) $\quad B_{2}: 2 x-y+2 z-4=-x-2 y-2 z+2$
$B_{2}: 3 x+y+4 z-6=0$
Now check Option
22. The general solution of the differential equation $\left(y^{2}-x^{3}\right) d x-x y d y=0(x \neq 0)$ is : (where c is a constant of integration)
(1) $y^{2}-2 x^{2}+c x^{3}=0(2) y^{2}-2 x^{3}+c x^{2}=0(3) y^{2}+2 x^{2}+c x^{3}=0(4) y^{2}+2 x^{3}+c x^{2}=0$

Sol. 4

$$
\left(y^{2}-x^{3}\right) d x-x y d y=0
$$

$y \frac{d y}{d x}=\frac{y^{2}-x^{3}}{x}$
let $y^{2}=t$
$\frac{1}{2} \frac{d t}{d x}=\frac{t-x^{3}}{x}$
$\frac{\mathrm{dt}}{\mathrm{dx}}-\frac{2 \mathrm{t}}{\mathrm{x}}=-2 \mathrm{x}^{2}$ LDE
I.f $=e^{\int \frac{-2}{x} d x=\frac{1}{x^{2}}}$
$\mathrm{t} \frac{1}{\mathrm{x}^{2}}=\int-2 \mathrm{x}^{2} \frac{1}{\mathrm{x}^{2}} \mathrm{dx}$
$y^{2} / x^{2}=-2 x+C$
$y^{2}+2 x^{3}+C x^{2}=0$
23. A group of students comprises of 5 boys and n girls. If the number of ways, in which a team of 3 st-udents can randomly be selected from this group such that there is at least one boy and at least one girl in each team, is 1750, then is equal to :
(1) 25
(2) 24
(3) 27
(4) 28

Sol. 1
5B + nG
${ }^{5} \mathrm{C}_{1} \cdot{ }^{\mathrm{n}} \mathrm{C}_{2}+{ }^{5} \mathrm{C}_{2} \cdot{ }^{\mathrm{n}} \mathrm{C}_{1}=1750$
$\frac{5 n(n-1)}{2}+10 n=1750$
$5 n^{2}-5 n+20 n=3500$
$5 n^{2}+15 n-3500=0$
$n^{2}+3 n-700=0$
$\mathrm{n}=25$
24. Let A, B and C be sets such that $\phi \neq A \cap B \subseteq C$. Then which of the following statements is not true ?
(1) $B \cap C_{\neq \phi}$
(2) If $(A-C) \subseteq B$, then $A \subseteq B$
(3) $(C \cup A) \cap(C \cup B)=C(4)$ If $(A-B) \subseteq C$, then $A \subseteq C$

Sol. 2
Let $A:\{1,2,3\}$
B : $\{3,4,5\}$
$C:\{1,2,3,4,5\}$
Now $\phi \neq A \cap B \subseteq C$
(i) $\mathrm{B} \cap \mathrm{C} \neq \phi$
(ii) It $A-C \subseteq B$ then $A \subseteq B$ (False)
(iii) $(C \cup A) \cap(C \cup B)=C \cap C=C$ (True)
(iv) $A-B \subseteq C \Rightarrow A \subseteq C$ (True)
25. $\lim _{x \rightarrow 0} \frac{x+2 \sin x}{\sqrt{x^{2}+2 \sin x+1}+\sqrt{\sin ^{2} x-x+1}}$ is :
(1) 1
(2) 3
(3) 6
(4) 2

Sol. 4
$\operatorname{Lt}_{x \rightarrow 0} \frac{x+2 \operatorname{Sin} x}{\left(x^{2}+2 \operatorname{Sin} x+1\right)-\left(\operatorname{Sin}^{2} x-x+1\right)}\left(\sqrt{x^{2}+2 \sin x+1}+\sqrt{\sin ^{2} x-x+1}\right)$
$\operatorname{Lt}_{x \rightarrow 0} \frac{x+2 \operatorname{Sin} x}{x^{2}+x+2 \operatorname{Sin} x-\operatorname{Sin}^{2} x}\left(\sqrt{x^{2}+2 \sin x+1}+\sqrt{\sin ^{2} x-x+1}\right)$
$\operatorname{Lt}_{x \rightarrow 0}\left(\frac{1+2 \frac{\sqrt{\operatorname{Sin} x}}{x}}{x+1+2 \frac{\operatorname{Sin} x}{x}-\frac{\operatorname{Sin}^{2} x}{x^{2}} x}\right)\left(\sqrt{x^{2}+2 \sin x+1}+\sqrt{\sin ^{2} x-x+1}\right)$
$=\frac{1+2}{1+2}(2)$
$=2$

हमारा विश्वास... हर एक विद्यार्यी है खुास

26. The term independent of x in the expansion of $\left(\frac{1}{60}-\frac{x^{8}}{81}\right)\left(2 x^{2}-\frac{3}{x^{2}}\right)^{6}$ is equal to :
(1) 36
(2) -108
(3) -72
(4) -36

Sol. 4
$=$ Coff. of X^{0} in $y\left(\frac{1}{60}-\frac{x^{8}}{81}\right)\left(2 x^{2}-\frac{3}{x^{2}}\right)^{6}$
$=$ Coff of X^{0} in $\frac{1}{60}\left(2 x^{2}-\frac{3}{x^{2}}\right)^{6}+$ Coff of X^{-8} in $\left(\frac{-1}{81}\left(2 x^{2} \frac{-3}{x^{2}}\right)\right)^{6}$
$=\frac{1}{60} 6_{C_{3}} 2^{3}(-3)^{3}-\frac{1}{81} 6_{C_{5}}(2)^{1}(-3)^{5}$
$=\frac{1}{60} \times 20 \times 8 \times 27+\frac{1}{81} 6 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3$
$=-72+36$
$=-36$
27. A value of α such that $\int_{\alpha}^{\alpha+1} \frac{d x}{(x+\alpha)(x+\alpha+1)}=\log _{e}\left(\frac{9}{8}\right)$ is:
(1) $\frac{1}{2}$
(2) -2
(3) 2
(4) $-\frac{1}{2}$
27. 2
$\int_{\alpha}^{\alpha+1} \frac{d \alpha}{(x+\alpha)(x+\alpha+1)}$
$I=\int_{\alpha}^{\alpha+1} \frac{(x+\alpha+1)-(x+\alpha)}{(x+\alpha)(x+\alpha+1)} d x$
$I=\int_{\alpha}^{\alpha+1} \frac{1 d x}{x+\alpha}-\int_{\alpha}^{\alpha+1} \frac{1}{(x+\alpha+1)} d x$
$[\ln (\mathrm{x}+\alpha)]_{\alpha}^{\alpha+1}-[\ln (\mathrm{x}+\alpha+1)]_{\alpha}^{\alpha+1}$
$I=\ln \left(\frac{2 \alpha+1}{2 \alpha}\right)-\ln \left(\frac{2 \alpha+2}{2 \alpha+1}\right)$
$I=\ln \left(\frac{(2 \alpha+1)^{2}}{2 \alpha(2 \alpha+2)}\right)=\ln \left(\frac{9}{8}\right) \Rightarrow \alpha=1 \& \alpha=-2$
28. Let S be the set of all $\alpha \in R$ such that the equation, $\cos 2 x+\alpha \sin x=2 \alpha-7$ has a solution. Then S is equal to :
(1) $[3,7]$
(2) $[1,4]$
(3) $[2,6]$
(4) R

Sol. 3
$\operatorname{Cos} 2 x+\alpha \operatorname{Sin} x=2 \alpha-7$
$1-2 \operatorname{Sin}^{2} x+\alpha \operatorname{Sin} x=2 \alpha-7$

Let $\operatorname{Sin} x=t, \quad$ where $-1 \leq t \leq 1$
$2 t^{2}-\alpha t+2 \alpha-8=0$
$f(1) f(-1) \leq 0$
$(2-\alpha+2 \alpha-8)(2+\alpha+2 \alpha-8) \leq 0$
$(\alpha-6)(3 \alpha-6) \leq 0$
$(\alpha-6)(\alpha-2) \leq 0$
$2 \leq \alpha \leq 6$
29. A person throws two fair dice. He wins Rs. 15 for throwing a doublet (same numbers on the two dice), wins Rs. 12 when the throw results in the sum of 9, and loses Rs. 6 for any other outcome on the throw Then the expected gain/loss (in Rs.) of the person is:
(1) $\frac{1}{2}$ gain
(2) $\frac{1}{2}$ loss
(3) 2 gain
(4) $\frac{1}{4}$ loss

Sol. 2

$$
\begin{array}{ll}
\text { Prize win }=15 & \text { When doublet ocurr } \\
\text { win }=12 & \text { When sum } 9 \\
\text { wins }=6 & \text { When other any out come } \\
\text { Exp. }=\frac{1}{36}\{6 \times 15+4 \times 12-26 \times 6\} \\
=-\frac{1}{2} &
\end{array}
$$

30. If α, β and γ are three consecutive terms of a non-constant G.P. such that the equation $\alpha x^{2}+2 \beta x+\gamma=0$ and $x^{2}+x-1=0$ have a common root, then $\alpha(\beta+\gamma)$ is equal to :
(1) 0
(2) $\alpha \beta$
(3) $\beta \gamma$
(4) $\alpha \gamma$

Sol. 3

$$
\begin{array}{ll}
\alpha x^{2}+2 \beta+\gamma=0 & x^{2}+x-1=0 \\
& \frac{-1+\sqrt{5}}{2} \\
& \frac{-1-\sqrt{5}}{2}
\end{array}
$$

Let Common Root 'a'
Since α, β, r are in G.P
$\alpha a^{2}+2 \beta a+\gamma=0$
$\frac{A}{R}, A, A R$
$a^{2}+a-1=0$
$\frac{A}{R} a^{2}+2 A a+A R=0$
$a^{2}+2 R a+R^{2}=0$
$(a+R)^{2}=0$
$a=-R$ Now $R^{2}-R-1=0$
$1+R=R^{2}$

Now $\alpha(\beta+\gamma)$

मोशन ने बनाया साधारण को असाधारण JEE Main Result Jan'19 4 RESIDENTIAL COACHING PROGRAM (DRONA) STUDENTS ABOVE 99.9 PERCENTILE

Total Students Above 99.9 percentile - 17
Total Students Above 99 percentile - 282
Total Students Above 95 percentile - 983
\% of Students Above 95 percentile $\frac{983}{3538}$ $=$ 27 .78\%

Scholarship on the Basis of 12th Class Result

Marks PCM or PCB	Hindi State Board	State Eng OR CBSE
$70 \%-74 \%$	$\mathbf{3 0 \%}$	$\mathbf{2 0 \%}$
$\mathbf{7 5 \% - 7 9 \%}$	$\mathbf{3 5 \%}$	$\mathbf{2 5 \%}$
$80 \%-84 \%$	$\mathbf{4 0 \%}$	$\mathbf{3 5 \%}$
$\mathbf{8 5 \% - 8 7 \%}$	$\mathbf{5 0 \%}$	$\mathbf{4 0 \%}$
$\mathbf{8 8 \% - 9 0 \%}$	$\mathbf{6 0 \%}$	$\mathbf{5 5 \%}$
$\mathbf{9 1 \% - 9 2 \%}$	$\mathbf{7 0 \%}$	$\mathbf{6 5 \%}$
$\mathbf{9 3 \% - 9 4 \%}$	$\mathbf{8 0 \%}$	$\mathbf{7 5 \%}$
$\mathbf{9 5 \%}$ \& Above	$\mathbf{9 0 \%}$	$\mathbf{8 5 \%}$

New Batches for Class $11^{\text {th }}$ to $12^{\text {th }}$ pass 17 April 2019 \& 01 May 2019

हिन्दी माध्यम 市 लिए पृयक बैच

Scholarship on the Basis of JEE Main Percentile

