

Motíon
 Nurturing potential through education

H.O. : 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in | \boxtimes : info@motion.ac.in

[PHYSICS]

1. A thermometer graduated according to a linear scale reads a value x_{0} when in contact with boiling water, and $x_{0} / 3$ when in contact with ice. What is the temperature of an object in ${ }^{\circ} \mathrm{C}$, if this thermometer in the contact with the object reads $x_{0} / 2$?
(A) 60
(B) 40
(C) 35
(D) 25
sol. D

$\Rightarrow \mathrm{T}^{\circ} \mathrm{C}=\frac{\mathrm{x}_{0}}{6} \&\left(\mathrm{x}_{0}-\frac{\mathrm{x}_{0}}{3}\right)=\left(100-0^{\circ} \mathrm{C}\right)$
$x_{0}=\frac{300}{2}$
$\Rightarrow \mathrm{T}^{\circ} \mathrm{C}=\frac{150}{6}=25^{\circ} \mathrm{C}$
2. The region between $y=0$ and $y=d$ contains a magnetic field $\vec{B}=B \hat{z} \cdot A$ aprticle of mass m and charge q enters the region with a velocity $\vec{v}=v \hat{i}$. If $d=\frac{m v}{2 q B}$, the acceleration of the charged particle at the point of its emergence at the other side is -
(A) $\frac{q v B}{m}\left(\frac{-\hat{j}+\hat{i}}{\sqrt{2}}\right)$
(B) $\frac{q v B}{m}\left(\frac{1}{2} \hat{i}-\frac{\sqrt{3}}{2} \hat{j}\right)$
(C) $\frac{q v B}{m}\left(\frac{\sqrt{3}}{2} \hat{i}+\frac{1}{2} \hat{j}\right)$
(D) $\frac{q v B}{m}\left(\frac{\hat{i}+\hat{j}}{\sqrt{2}}\right)$

Sol. Bonus

3. A paramagnetic substance in the form of a cube with sides 1 cm has a magnetic dipole moment of $20 \times 10^{-6} \mathrm{~J} / \mathrm{T}$ when a magnetic intensity of $60 \times 10^{3} \mathrm{~A} / \mathrm{m}$ is applied. Its magnetic susceptibility is:
(1) 4.3×10^{-2}
(B) 3.3×10^{-4}
(C) 2.3×10^{-2}
(D) 3.3×10^{-2}

Sol. B
$X=\frac{I}{H}$
$I=\frac{\text { Magnetic Moment }}{\text { Volume }}$
$I=\frac{20 \times 10^{-6}}{10^{-6}}=20 \mathrm{~N} / \mathrm{m}^{2}$
$X=\frac{20}{60 \times 10^{+3}}=\frac{1}{3} \times 10^{-3}$
$=0.33 \times 10^{-3}=3.3 \times 10^{-4}$
4. The mass and the diameter of a planet are three times the respective values for the Earth. The period of oscillation of a simple Pendulum on the Earth is 2 s . The period of oscillation of the same pendulum on the planet would be :
(A) $\frac{\sqrt{3}}{2} \mathrm{~s}$
(B) $2 \sqrt{3} \mathrm{~s}$
(C) $\frac{2}{\sqrt{3}} \mathrm{~s}$
(D) $\frac{3}{2} \mathrm{~s}$

Sol. B

$\because g=\frac{G M}{R^{2}}$
$\frac{g_{p}}{g_{e}}=\frac{M_{e}}{M_{e}}\left(\frac{R_{e}}{R_{p}}\right)^{2}=3\left(\frac{1}{3}\right)^{2}=\frac{1}{3}$

Also, $T \propto \frac{1}{\sqrt{g}}$

$$
\begin{aligned}
& \frac{T_{p}}{T_{e}}=\sqrt{\frac{g_{e}}{g_{p}}}=\sqrt{3} \\
& \Rightarrow T_{p}=2 \sqrt{3} \mathrm{~s}
\end{aligned}
$$

5. A string is wound around a hollow cylinder of mass 5 kg and radius 0.5 m . If the string is now pulled with a horizontal force of 40 N , and the cylinder is rolling without slipping on a horizontal surface (seee figure), then the angular acceleration of the cylinder will be (Neglect the mass and thickness of the string):

(A) $20 \mathrm{rad} / \mathrm{s}^{2}$
(B) $16 \mathrm{rad} / \mathrm{s}^{2}$
(C) $10 \mathrm{rad} / \mathrm{s}^{2}$
(D) 12.rad/s²

Sol. B

$40+f=m(R \alpha)$
$40 \times R-f \times R=m R^{2} \alpha$
$40-f=m R \alpha$
From (i) and (ii)
$\alpha=\frac{40}{\mathrm{mR}}=16$
6. A particle of mass m is moving in a straight line with momentum p. Starting at time $t=0$, a force $\mathrm{F}=\mathrm{kt}$ acts in the same direction on the moving particle during time interval T so that its mometum changes from p to $3 p$. Here k is a constant. The value of T is :
(A) $2 \sqrt{\frac{\mathrm{p}}{k}}$
(B) $2 \sqrt{\frac{k}{p}}$
(C) $\sqrt{\frac{2 k}{p}}$
(D) $\sqrt{\frac{2 \mathrm{p}}{k}}$

Sol. A

$$
\begin{aligned}
& \frac{d p}{d t}=F=k t \\
& \int_{P}^{3 P} d P=\int_{0}^{T} P t d t \\
& 2 p=\frac{K^{2}}{2} \\
& T=2 \sqrt{\frac{P}{K}}
\end{aligned}
$$

7. A 27 mW laser beam has a cross-sectional area of $10 \mathrm{~mm}^{2}$. The magnitude of the maximum electric field in this electromagnetic wave is given by:
[Given permittivity of space $\varepsilon_{0}=9 \times 10^{-12}$ SI units, Speed of light $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$]
(A) $0.7 \mathrm{kV} / \mathrm{m}$
(B) $1.4 \mathrm{kV} / \mathrm{m}$
(C) $2 \mathrm{kV} / \mathrm{m}$
(D) $1 \mathrm{kV} / \mathrm{m}$

Sol. B
Intensity of EM wave is given by
$I=\frac{\text { Power }}{\text { Area }}=\frac{1}{2} \quad \varepsilon_{0} E_{0}{ }^{2} C$
$=\frac{27 \times 10^{-3}}{10 \times 10^{-6}}=\frac{1}{2} \times 9 \times 10^{-12} \times \mathrm{E}^{2} \times 3 \times 10^{8}$
$\mathrm{E}=\sqrt{2} \times 10^{3} \mathrm{kv} / \mathrm{m}$
$=1.4 \mathrm{kv} / \mathrm{m}$
8. A simple pendulum of length 1 m is oscillating with an angular frequency $10 \mathrm{rad} / \mathrm{s}$. The support of the pendulum starts oscillating up and down with a small angular frequency of $1 \mathrm{rad} / \mathrm{s}$ and an amplitude of $10^{-2} \mathrm{~m}$. The relative change in the angular frequency of the pendulum is best given by :
(A) $10^{-1} \mathrm{rad} / \mathrm{s}$
(B) $10^{-3} \mathrm{rad} / \mathrm{s}$
(C) $10^{-5} \mathrm{rad} / \mathrm{s}$
(D) $1 \mathrm{rad} / \mathrm{s}$

Sol. B
Angular frequency of pendulum
$\omega=\sqrt{\frac{g_{\text {eff }}}{\ell}}$
$\therefore \frac{\Delta \omega}{\omega}=\frac{1}{2} \frac{\Delta \mathrm{~g}_{\text {eff }}}{\mathrm{g}_{\text {eff }}}$
$\Delta \omega=\frac{1}{2} \frac{\Delta g}{g} \times \omega$
[$\omega_{\mathrm{s}}=$ angular frequency of support]
$\Delta \omega=\frac{1}{2} \times \frac{2 \mathrm{Aw}_{\mathrm{s}}^{2}}{100} \times 100$
$\Delta \omega=10^{-3} \mathrm{rad} / \mathrm{sec}$

JEE MAIN_11 Jan 2019 _ Evening

9. In the circuit shown, the potential difference between A and B is :

(A) 3 V
(B) 6 V
(C) 2 V
(D) 1 V

Sol. C
Potential difference across $A B$ will be equal to battery equivalent across CD
$V_{A B}=V_{C D}=\frac{\frac{E_{1}}{r_{1}}+\frac{E_{2}}{r_{2}}+\frac{E_{3}}{r_{3}}}{\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}}=\frac{1}{1}+\frac{2}{1}+\frac{3}{1}$
$=\frac{6}{3}=2 \mathrm{~V}$
10. A metal ball of mass 0.1 kg is heated upto $500^{\circ} \mathrm{C}$ and dropped into a vessel of heat capacity 800 JK^{-1} and containing 0.5 kg water. The initial temperature of water and vessel is $30^{\circ} \mathrm{C}$. What is the approximate percentage increment in the temperature of the water ? [Specific Heat Capacities of water and metal are, respectively,
$4200 \mathrm{Jkg}^{-1}$
(A) 20%
(B) 25%
(C) 15%
(D) 30%
sol. A
$0.1 \times 400 \times(500-T)=0.5 \times 4200 \times(T-30)+800(T-30)$
$\Rightarrow 40(500-\mathrm{T})=(\mathrm{T}-30)(2100+800)$
$\Rightarrow 20000-40 \mathrm{~T}=2900 \mathrm{~T}-30 \times 2900$
$\Rightarrow 20000+30 \times 2900=\mathrm{T}(2940)$
$\mathrm{T}=30.4^{\circ} \mathrm{C}$
$\frac{\Delta T}{T} \times 100=\frac{6.4}{30} \times 100$
$\simeq 20 \%$
11. In the experimental set up of metre bridge shown in the figure, the null point is obtained at a distance of 40 cm from A. If a 10Ω resistor is connected in series with R_{1}, the null point shifts by 10 cm . The resistance that should be connected in parallel with $\left(R_{1}+10\right) \Omega$ such that the null point shifts back to its initial position is:

(A) 60Ω
(B) 30Ω
(C) 20Ω
(D) 40Ω

Sol. A
$\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{2}{3}$
$\frac{\mathrm{R}_{1}+10}{\mathrm{R}_{2}}=1 \Rightarrow \mathrm{R}_{1}+10=\mathrm{R}_{2}$
$\frac{2 \mathrm{R}_{2}}{3}+10=\mathrm{R}_{2}$
$10=\frac{R_{2}}{3} \Rightarrow R_{2}=30 \Omega$
$\& R_{1}=20 \Omega$
$30 \times R$
$\frac{\frac{30 \times R}{30+R}}{30}=\frac{2}{3}$
$R=60 \Omega$
12. If speed (V), acceleration (A) and force (F) are considered as fundamental units, the dimension of Young's modulus will be :
(A) $V^{-2} A^{2} F^{2}$
(B) $\mathrm{V}^{-2} \mathrm{~A}^{2} \mathrm{~F}^{-2}$
(C) $V^{-4} A^{-2} F$
(D) $V^{-4} A^{2} F$

Sol. D
$\frac{\mathrm{F}}{\mathrm{A}}=\mathrm{y} \cdot \frac{\Delta \ell}{\ell}$
$[\mathrm{Y}]=\frac{\mathrm{F}}{\mathrm{A}}$
Now from dimension
$F=\frac{M L}{T^{2}}$
$L=\frac{F}{M} \cdot T^{2}$
$\mathrm{L}^{2}=\frac{\mathrm{F}^{2}}{\mathrm{M}^{2}}\left(\frac{\mathrm{~V}}{\mathrm{~A}}\right)^{4} \quad \because \mathrm{~T}=\frac{\mathrm{V}}{\mathrm{A}}$
$L^{2}=\frac{F^{2}}{M^{2} A^{2}} \frac{V^{4}}{A^{2}} F=M A$
$L^{2}=\frac{V^{4}}{A^{2}}$
$[\mathrm{Y}]=\frac{[\mathrm{F}]}{[\mathrm{A}]}=\mathrm{F}^{1} \mathrm{~V}^{-4} \mathrm{~A}^{2}$
13. A particle moves from the point $(2.0 \hat{i}+4.0 \hat{j}) \mathrm{m}$, at $\mathrm{t}=0$, with an initial velocity $(5.0 \hat{i}+4.0 \hat{\mathrm{j}}) \mathrm{ms}^{-1}$.

It is acted upon by a constant force which produces a constant acceleration $(4.0 \hat{i}+4.0 \hat{j}) \mathrm{ms}^{-2}$. What is the distance of the particle from the origin at time 2 s ?
(A) $10 \sqrt{2} \mathrm{~m}$
(B) 5 m
(C) $20 \sqrt{2} \mathrm{~m}$
(D) 15 m

Sol. C

$\overrightarrow{\mathrm{S}}=(5 \hat{i}+4 \hat{\mathrm{j}}) 2+\frac{1}{2}(4 \hat{i}+4 \hat{\mathrm{j}}) 4$
$=10 \hat{i}+8 \hat{j}+8 \hat{i}+8 \hat{j}$
$\vec{r}_{f}-\vec{r}_{i}=18 \hat{i}+16 \hat{j}$
$\vec{r}_{f}=20 \hat{i}+20 \hat{j}$
$\left|\vec{r}_{f}\right|=20 \sqrt{2}$
14. Two rods A and B of identical dimensions are at temperature $30^{\circ} \mathrm{C}$. If A is heated upto $180^{\circ} \mathrm{C}$ and B upto $T^{\circ} C$, then the new lengths are the same. If the ratio of the coefficients of linear expansion of A and B is $4: 3$, then the value of T is :
(A) $270^{\circ} \mathrm{C}$
(B) $230^{\circ} \mathrm{C}$
(C) $200^{\circ} \mathrm{C}$
(D) $250^{\circ} \mathrm{C}$

Sol. B
$\Delta \mathrm{I}_{1}=\Delta \mathrm{I}_{2}$
$\left|\alpha_{1} \Delta T_{1} \stackrel{2}{=}\right| \alpha_{2} \Delta T_{2}$
$\frac{\alpha_{1}}{\alpha_{2}}=\frac{\Delta T_{1}}{\Delta T_{2}}$
$\frac{4}{3}=\frac{\mathrm{T}-30}{180-30}$
$\mathrm{T}=230^{\circ} \mathrm{C}$
15. A monochromatic light is incident at a certain angle on an equilateral triangular prism and suffers minimum deviation. If the refractive index of the martial of the prism is $\sqrt{3}$, then the angle of incidence is
(A) 90°
(B) 30°
(C) 45°
(D) 60°

Sol. D

$i=e$
$r_{1}=r_{2}=\frac{A}{2}=30^{\circ}$
by Snell's law
$1 \times \sin i=\sqrt{3} \times \frac{1}{2}=\frac{\sqrt{3}}{2}$
$i=60$
16. In a double-slit experiment, green light ($5303 \AA$) falls on a double slit having a separation of $19.44 \mu \mathrm{~m}$ and a width of $4.05 \mu \mathrm{~m}$. The number of bright fringes between the first and the second diffraction minima is :
(A) 09
(B) 05
(C) 10
(D) 04

Sol. B

For diffraction location of first minima
$y_{1}=\frac{\Delta \lambda}{a}=0.2469 \mathrm{D} \lambda$
Location of $2^{\text {nd }}$ minima
$y_{2}=\frac{2 \Delta \lambda}{a}=0.4938 \mathrm{D} \lambda$
Now for interference
Path difference at P.
$\frac{d y}{D}=4.8 \lambda$
Path difference at Q
$\frac{d y}{D}=9.6 \lambda$
So orders of maxima in between P and Q is $5,6,7,8,9$ So 5 bright fringes all present between $P \& Q$.
17. A galvanometer having a resistance of 20Ω and 30 divisions on both sides has figure of merit 0.005 ampere/division. The resistance that should be connected in series such that it can be used as a voltameter upto 15 volt, is :
(A) 80Ω
(B) 120Ω
(C) 125Ω
(D) 100Ω

Sol. A
$R=20 \Omega$
$N_{L}=N_{R}=N=30$
$F O M=\frac{I}{\phi}=0.005 \mathrm{~A} /$ Div.
Current sensitivity $=C S=\left(\frac{1}{0.005}\right)=\frac{\phi}{I}$
$\mathrm{Ig}_{\max }=0.005 \times 30$
$=15 \times 10^{-2}=0.15$
$15=0.15[20+\mathrm{R}]$
$100=20+R$
$R=80$
18. In a photoelectric experiment, the wavelength of the light incident on a metal is changed from 300 nm to 400 nm . The decrease in the stopping potential is close to : $\left(\frac{\mathrm{hc}}{\mathrm{e}}=1240 \mathrm{~nm}-\mathrm{V}\right)$
(A) 1.0 V
(B) 1.5 V
(C) 0.5 V
(D) 2.0 V

Sol. A
$\frac{\mathrm{hc}}{\lambda_{1}}=\phi+\mathrm{eV}_{1}$
$\frac{\mathrm{hc}}{\lambda_{2}}=\phi+\mathrm{eV}_{2}$
(i) - (ii)
hc $\left(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right)=\mathrm{e}\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$
$\Rightarrow \mathrm{V}_{1}-\mathrm{V}_{2}=\frac{\mathrm{hc}}{\mathrm{e}}\left(\frac{\lambda_{2}-\lambda_{1}}{\lambda_{1}-\lambda_{2}}\right)$
$=(12540 \mathrm{~nm}-\mathrm{V}) \frac{100 \mathrm{~nm}}{300 \mathrm{~nm} \times 400 \mathrm{~nm}}$
$=1 \mathrm{~V}$
19. An electric field of $1000 \mathrm{~V} / \mathrm{m}$ is applied to an electric dipole at angle of 45°. The value of electric dipole moment is $10^{-29} \mathrm{C} . \mathrm{m}$. What is the potential energy of the electric dipole?
(A) $-10 \times 10^{-29} \mathrm{~J}$
(B) $-9 \times 10^{-20} \mathrm{~J}$
(C) $-20 \times 10^{-18} \mathrm{~J}$
(D) $-7 \times 10^{-27} \mathrm{~J}$

Sol. D
$U=-\vec{P} . \vec{E}$
$=-\mathrm{PE} \cos \theta$
$=-\left(10^{-29}\right)\left(10^{3}\right) \cos 45^{\circ}$
$=-0.707 \times 10^{-26} \mathrm{~J}$
$=-7 \times 10^{-27} \mathrm{~J}$
20. The circuit shown below contains two ideal diodes, each with a forward resistance of 50Ω. If the battery voltage is 6 V , the current through the 100Ω resistance (in Amperes) is :

(A) 0.020
(B) 0.030
(C) 0.036
(D) 0.027

Sol. A

$I=\frac{6}{300}=0.002\left(D_{2}\right.$ is in reverse bias $)$
21. A circular disc D_{1} of mass M and radius R has two identical discs D_{2} and D_{3} of the same mass M and radius R attached rigidly at its opposite ends (see figure). The moment of inertia of the system about the axis $0 O^{\prime}$, passing through the centre of D_{1}, as shown inthe figure, will be :

(A) $\frac{4}{5} M R^{2}$
(B) $M R^{2}$
(C) $\frac{2}{3} M R^{2}$
(D) $3 M R^{2}$

Sol. D
$I=\frac{M R^{2}}{2}+2\left(\frac{M R^{2}}{4}+M R^{2}\right)$
$=\frac{M R^{2}}{2}+\frac{M R^{2}}{2}+2 M R^{2}$
$=3 \mathrm{MR}^{2}$
22. An amplitude modulated signal is plotted below :

Which one of the following best describes the above signal ?
(A) $\left(9+\sin \left(2.5 \pi \times 10^{5} t\right)\right) \sin \left(2 \pi \times 10^{4} t\right) V$
(B) $\left(9+\sin \left(2 \pi \times 10^{4} t\right)\right) \sin \left(2.5 \pi \times 10^{5} t\right) V$
(C) $\left(1+9 \sin \left(2 \pi \times 10^{4} t\right)\right) \sin \left(2.5 \pi \times 10^{5} t\right) V$
(D) $\left(9+\sin \left(4 \pi \times 10^{4} t\right)\right) \sin \left(5 \pi \times 10^{5} t\right) V$

Sol. B
Analysis of graph says
(1) Amplitude varies as $8-10 \mathrm{~V}$ or 9 ± 1
(2) Two time period as
$100 \mu \mathrm{~s}$ (signal wave) \& $8 \mu \mathrm{~s}$ (carrier wave)
Hence signal is $\left[9 \pm 1 \sin \left(\frac{2 \pi t}{T_{1}}\right)\right] \sin \left(\frac{2 \pi t}{T_{2}}\right)$
$=9 \pm 1 \sin \left(2 \pi \times 10^{4} \mathrm{t}\right) \sin 2.5 \pi \times 10^{5} \mathrm{t}$
23 A particle of mass m and charge q is in an electric and magnetic field given by
$\overrightarrow{\mathrm{E}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}} ; \overrightarrow{\mathrm{B}}=4 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}$
The charged particle is shifted from the origin to the point $P(x=1 ; y=1)$ along a straight path. The magnitude of the total work done is -
(A) $(0.35) \mathrm{q}$
(B) $(0.15) \mathrm{q}$
(C) $5 q$
(D) $(2.5) \mathrm{q}$

Sol.
$\vec{F}_{\text {net }}=\mathrm{q} \overrightarrow{\mathrm{E}}+\mathrm{q}(\overrightarrow{\mathrm{V}} \times \overrightarrow{\mathrm{B}})$
$=(2 q \hat{i}+3 q \hat{j})+q(\vec{v} \times \vec{B})$
$W=\vec{F}_{\text {net }} \cdot \vec{S}$
$=2 q+3 q$
$=5 q$
24. A copper wire is wound on a wooden frame, whose shape is that of an equilateral triangle. If the linear dimension of each side of the frame is increased by a factor of 3, keeping the number of turns of the coil per unit length of the frame the same, then the self inductance of the coil :
(A) decreases by a factor of $9 \sqrt{3}$
(B) decreases by a factor of 9
(C) increases by a factor of 27
(D) increases by a factor of 3

Sol.
Total length L will remain constnat $L=(3 a) N$

$$
\text { (} \mathrm{N}=\text { total turns })
$$

and length fo winding $=$ (d) N
(d = diameter of wire)

self inductance $=\mu_{0} n^{2} \mathrm{~A} \ell$
$=\mu_{0} n^{2}\left(\frac{\sqrt{3} a^{2}}{4}\right) d N$
$\propto a^{2} N \propto a$
So self inductance will become 3 times
25. A pendulum is executing simple harmonic motion and its maximum kinetic energy is K_{1}. If the length of the pendulum is doubled and it performs simple harmonic motion with the same amplitude as in the first case its maximum kinetic energy is K_{2}. Then -
(A) $K_{2}=\frac{k_{1}}{2}$
(B) $\mathrm{K}_{2}=2 \mathrm{~K}_{1}$
(C) $\mathrm{K}_{2}=\mathrm{K}_{1}$
(D) $\mathrm{K}_{2}=\frac{\mathrm{k}_{1}}{4}$

Sol. B

Maximum kinetic energy at lowest point B is given by
$\mathrm{K}=\mathrm{mgl}(1-\cos \theta)$
Where $\theta=$ angular amp.
$\mathrm{K}_{1}=\mathrm{mgl}(1-\cos \theta)$
$\mathrm{K}_{2}=\mathrm{mg}(2 \ell)(1-\cos \theta)$
$\mathrm{K}_{2}=2 \mathrm{~K}_{1}$
26. When 100 g of a liquid A at $100^{\circ} \mathrm{C}$ is added to 50 g of a liquid B at temperature $75^{\circ} \mathrm{C}$, the temperature of the mixture becomes $90^{\circ} \mathrm{C}$. The temperature of the mixture, if 100 g of liquid A at $100^{\circ} \mathrm{C}$ is added to 50 g of liquid B at $50^{\circ} \mathrm{C}$, will be -
(A) $60^{\circ} \mathrm{C}$
(B) $70^{\circ} \mathrm{C}$
(C) $80^{\circ} \mathrm{C}$
(D) $85^{\circ} \mathrm{C}$

Sol. C

$100 \times S_{A} \times[100-90]=50 \times S_{B} \times(90-75)$
$2 \mathrm{~S}_{\mathrm{A}}=1.5 \mathrm{~S}_{\mathrm{B}}$
$S_{A}=\frac{3}{4} S_{B}$
Now, $100 \times \mathrm{S}_{\mathrm{A}} \times[100-\mathrm{T}]=50 \times \mathrm{S}_{\mathrm{B}}(\mathrm{T}-50)$
$2 \times\left(\frac{3}{4}\right)(100-T)=(T-50)$
$300-3 T=2 T-100$
$\mathrm{T}=80$
27. The magnitude of torque on a particle of mass 1 kg is 2.5 Nm about the origin. If the force acting on it is 1 N , and the distance of the particle from the origin is 5 m , the angle between the force and the position vector is (in radians) -
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{6}$
(D) $\frac{\pi}{8}$

Sol. C

$2.5=1 \times 5 \sin \theta$
$\sin \theta=0.5=\frac{1}{2}$
$\theta=\frac{\pi}{6}$
28. In a process, temperature and volume of one mole of an ideal monoatomic gas are varied according to the relation $\mathrm{VT}=\mathrm{K}$, where K is a constant. In this process the temperature of the gas is increased by ΔT. The amount of heat absorbed by gas is (R is gas constant);
(A) $\frac{2 \mathrm{~K}}{3} \Delta \mathrm{~T}$
(B) $\frac{1}{2} R \Delta T$
(C) $\frac{3}{2} R \Delta T$
(D) $\frac{1}{2} K R \Delta T$

Sol. B
$V T=K$
$\Rightarrow V\left(\frac{P V}{n R}\right)=k \Rightarrow V^{2}=K$
$\because C=\frac{R}{1-\mathrm{x}}+\mathrm{C}_{\mathrm{v}}$ (For polytropic process)
$C=\frac{R}{1-2}+\frac{3 R}{2}=\frac{R}{2}$
$\therefore \Delta \mathrm{Q}=\mathrm{nC} \Delta \mathrm{T}$
$=\frac{R}{2} \times \Delta T$
29. Seven capacitors, each of capacitance $2 \mu \mathrm{~F}$, are to be connected in a configuration to obtain an effective capacitance of $\left(\frac{6}{13}\right) \mu F$. Which of the combinations, shown in figures below, will achieve the desired value?
(A)

(B)

(C)

(D)

Sol. D
$C_{e q}=\frac{6}{13} \mu \mathrm{~F}$
Therefore three capacitors most be in parallel to get 6 in
$\frac{1}{C_{e q}}=\frac{1}{3 C}+\frac{1}{C}+\frac{1}{C}+\frac{1}{C}+\frac{1}{C}$
$C_{\text {eq }}=\frac{3 C}{13}=\frac{6}{13} \mu \mathrm{~F}$

30. In a hydrogen like atom, when an electron jumps from the M - shell to the L-shell, the wavelength of emitted radiation is λ. If an electron jumps from N-shell to the L-shell, the wavelength of emitted radiation will be -
(A) $\frac{27}{20} \lambda$
(B) $\frac{25}{16} \lambda$
(C) $\frac{20}{27} \lambda$
(D) $\frac{16}{25} \lambda$

Sol. C

For $M \rightarrow L$ steel
$\frac{1}{\lambda}=K\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)=\frac{K \times 5}{36}$
for $N \rightarrow L$
$\frac{1}{\lambda^{\prime}}=K\left(\frac{1}{2^{2}}-\frac{1}{4^{2}}\right)=\frac{K \times 3}{16}$
$\lambda^{\prime}=\frac{20}{27} \lambda$

