

	13953	662	1066

(Under 50000 Rank) (since 2016) (5th to 10th class)

Toll Free :
1800-212-1799

Nurturing potential through education
H.O. : 394, Rajeev Gandhi Nagar, Kota
www.motion.ac.in |凶: info@motion.ac.in

[MATHEMATICS] 11-01-2019_Morning

1. The area (in sq. units) of the region bounded by the curve $x^{2}=4 y$ and the straight line $x=4 y-$ 2 is:
(A) $\frac{5}{4}$
(B) $\frac{7}{8}$
(C) $\frac{3}{4}$
(D) $\frac{9}{8}$

Sol. D

$x^{2}=4 y$
$x=4 y-2$
Solve (1) \& (2)
$x^{2}=4\left(\frac{x+2}{4}\right)$
$x^{2}=x+2$
$x^{2}-x-2=0$
$x=-1, x=2$
Bounded area is
$A=\int_{-1}^{2}\left(\frac{x+2}{4}-\frac{x^{2}}{4}\right) d x$
$A=\frac{1}{4} \int_{-1}^{2}\left(x+2-x^{2}\right) d x \Rightarrow A=\frac{1}{4}\left[\frac{x^{2}}{2}+2 x-\frac{x^{3}}{3}\right]_{-1}^{2}$
$A=\frac{1}{4}\left\{\left(\frac{4}{2}+4-\frac{8}{3}\right)-\left(\frac{1}{2}-2+\frac{1}{3}\right)\right\}$
$A=\frac{1}{4}\left\{\frac{10}{3}+\frac{7}{6}\right\} \Rightarrow A=\frac{27}{24}$
$A=\frac{9}{8}$ sq. units
2. If the system of linear equations
$2 x+2 y+3 z=a$
$3 x-y+5 z=b$
$x-3 y+2 z=c$
Where a, b, c are non - zero real numbers, has more than one solution, then :
(A) $b-c-a=0$
(B) $a+b+c=0$
(C) $b-c+a=0$
(D) $b+c-a=0$

Sol. A

Given equation
$2 x+2 y+3 z=a$
$3 x-y+5 z=b$
$x-3 y+2 z=c$
for more than one solution
$\Delta=\Delta_{1}=\Delta_{2}=\Delta_{3}=0$
$\Delta=\left|\begin{array}{ccc}2 & 2 & 3 \\ 3 & -1 & 5 \\ 1 & -3 & 2\end{array}\right| \Rightarrow 2(-2+15)-2(6-5)+3(-9+1)$
$\Rightarrow 26-2-24=0$
$\Delta=0$
$\Delta_{1}=\left|\begin{array}{ccc}a & 2 & 3 \\ b & -1 & 5 \\ c & -3 & 2\end{array}\right|=0$
$\Rightarrow \mathrm{a}(-2+15)-2(2 \mathrm{~b}-5 \mathrm{c})+3(-3 \mathrm{~b}+\mathrm{c})=0$
$13 a-13 b+13 c=0$
$a-b+c=0$
Also $\Delta_{2}=0 \Rightarrow\left|\begin{array}{lll}2 & a & 3 \\ 3 & b & 5 \\ 1 & c & 2\end{array}\right|=0$
$\Rightarrow 2(2 b-5 c)-a(6-5)+3(3 c-b)=0$
$b-c-a=0$
\therefore from $\Delta_{1}=\Delta_{2}=\Delta_{3}=0$
$a-b+c=0$
or $b-c-a=0$
3. The sum of an infinite geometric series with positive terms is 3 and the sum of the cubes of its terms is $\frac{27}{19}$. Then the common ratio of this series is :
(A) $\frac{2}{9}$
(B) $\frac{2}{3}$
(C) $\frac{1}{3}$
(D) $\frac{4}{9}$

Sol. B
$S_{\infty}=3$
let first term $=\mathrm{a}$
$S_{\infty}=\frac{a}{1-r},|r|<1$
$3=\frac{a}{1-r}$
$a=3(1-r)$
also given
sum of cubes $=\frac{27}{19}$
$\frac{a^{3}}{1-r^{3}}=\frac{27}{19}$
$19 a^{3}=27\left(1-r^{3}\right)$
Solve equation (1) \& (2)
$19[3(1-r)]^{3}=27\left(1-r^{3}\right)$
$19 \times 27(1-r)^{3}=27(1-r)\left(1+r+r^{2}\right)$
$19(1-r)^{2}=\left(1+r+r^{2}\right)$
$19+19 r^{2}-38 r-1-r-r^{2}=0$
$18 r^{2}-39 r+18=0$
$6 r^{2}-13 r+6=0$
$6 r^{2}-9 r-4 r+6=0$
$3 r(2 r-3)-2(2 r-3)=0$
$r=\frac{3}{2}$ or $r=\frac{2}{3}$
But $|r|<1 \therefore r=\frac{2}{3}$
4. Let $A=\left(\begin{array}{ccc}0 & 2 q & r \\ p & q & -r \\ p & -q & r\end{array}\right)$. If $A A^{\top}=I_{3}$, then $|p|$ is :
(A) $\frac{1}{\sqrt{5}}$
(B) $\frac{1}{\sqrt{3}}$
(C) $\frac{1}{\sqrt{2}}$
(D) $\frac{1}{\sqrt{6}}$

Sol. C
$A=\left[\begin{array}{ccc}0 & 2 q & r \\ p & q & -r \\ p & -q & r\end{array}\right]$
A. $A^{\top}=I_{3}$
$\left[\begin{array}{ccc}0 & 2 q & r \\ p & q & -r \\ p & -q & r\end{array}\right]\left[\begin{array}{ccc}0 & p & p \\ 2 q & q & -q \\ r & -r & r\end{array}\right] \Rightarrow\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc}4 q^{2}+r^{2} & 2 q^{2}-r^{2} & -2 q^{2}+r^{2} \\ 2 q^{2}-r^{2} & p^{2}+q^{2}+r^{2} & p^{2}-q^{2}-r^{2} \\ -2 q^{2}+r^{2} & p^{2}-q^{2}-r^{2} & p^{2}+q^{2}+r^{2}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Now, $4 q^{2}+r^{2}=1$
$2 q^{2}-r^{2}=0$,
$p^{2}-q^{2}-r^{2}=0$
$p^{2}+q^{2}+r^{2}=1$
Solving
$4 q^{2}+r^{2}=1$
$\frac{2 q^{2}-r^{2}=0}{6 q^{2}=1}$
$q^{2}=\frac{1}{6}$
$q=\frac{1}{\sqrt{6}}$
Soving
$r^{2}=2 q^{2}$
$r^{2}=\frac{1}{3} \Rightarrow r=\frac{1}{\sqrt{3}}$
$\therefore \mathrm{p}^{2}=\mathrm{q}^{2}+\mathrm{r}^{2}$
$\mathrm{p}^{2}=\frac{1}{6}+\frac{1}{3}$
$p^{2}=\frac{1}{2}$
$|P|=\frac{1}{\sqrt{2}}$
5. If $y(x)$ is the solution of the differential equation $\frac{d y}{d x}+\left(\frac{2 x+1}{x}\right) y=e^{-2 x}, x>0$, where $y(1)=\frac{1}{2} e^{-2}$, then :
(A) $y(x)$ is decreasing in $\left(\frac{1}{2}, 1\right)$
(B) $y\left(\log _{e} 2\right)=\frac{\log _{e} 2}{4}$
(C) $y\left(\log _{e} 2\right)=\log _{e} 4$
(D) $y(x)$ is decreaing in $(0,1)$

Sol. A

$\frac{d y}{d x}+\left(\frac{2 x+1}{x}\right) y=e^{-2 x}, x>0$
it is linear differential equation.
I.F. $=e^{\int\left(2+\frac{1}{x}\right) d x}=e^{(2 x+\ln x)}=e^{2 x} \cdot e^{\ln x}=x \cdot e^{2 x}$
\therefore I.F. $=x . \mathrm{e}^{2 \mathrm{x}}$
$x \cdot e^{2 x} \frac{d y}{d x}+\left(\frac{2 x+1}{x}\right) y \cdot x \cdot e^{2 x}=x \cdot e^{2 x} \cdot e^{-2 x}$
$\int d\left(y \cdot x \cdot e^{2 x}\right)=\int x d x$
$y \cdot x \cdot e^{2 x}=\frac{x^{2}}{2}+C$
Now given $y(1)=\frac{1}{2} \cdot e^{-2}$
$\therefore \frac{1}{2} \cdot e^{-2} \cdot(1) \cdot e^{2}=\frac{1}{2}+C \Rightarrow C=0$
$\therefore y . x \cdot e^{2 x}=\frac{x^{2}}{2} \Rightarrow y=\frac{x \cdot e^{-2 x}}{2}$
$\frac{d y}{d x}=\frac{e^{-2 x}}{2}+\frac{x \cdot e^{-2 x}(-2)}{2}=e^{-2 x}\left(\frac{1}{2}-x\right)$
$\therefore \frac{d y}{d x}=e^{-2 x}\left(\frac{1}{2}-x\right)$
\therefore when $\mathrm{x}>\frac{1}{2}, \frac{\mathrm{dy}}{\mathrm{dx}}<0$
$\therefore y(x)$ is decreasing in $\left(\frac{1}{2}, 1\right)$
6. Let $f(x)=\left\{\begin{array}{cc}-1, & -2 \leq x<0 \\ x^{2}-1, & 0 \leq x \leq 2\end{array}\right.$ and $g(x)=|f(x)|+f(|x|)$. Then, in the interval $(-2,2), g$ is :
(A) not differentiable at two points
(B) differentiable at all points
(C) not differentiable at one point
(D) not continuous

Sol. C

$|f(x)|=\left\{\begin{array}{cc}1, & -2 \leq x<0 \\ 1-x^{2}, & 0 \leq x<1 \\ x^{2}-1, & 1 \leq x \leq 2\end{array}\right.$
and $f(|x|)=x^{2}-1, x \in[-2,2]$
Hence $g(x)= \begin{cases}x^{2}, & x \in[-2,0) \\ 0, & x \in[0,1) \\ 2\left(x^{2}-1\right), & x \in[1,2]\end{cases}$
It is not differentiable at $\mathrm{x}=1$
7. In a triangle, the sum of lengths of two sides is x and the product of the lengths of the same two sides is y. If $x^{2}-c^{2}=y$, where c is the length of the third side of the triangle, then the circumradius of the triangle is :
(A) $\frac{\mathrm{C}}{\sqrt{3}}$
(B) $\frac{y}{\sqrt{3}}$
(C) $\frac{\mathrm{c}}{3}$
(D) $\frac{3}{2} y$

Sol. A
In $\triangle A B C$
$a+b=x \& a b=y$
$x^{2}-c^{2}=y$
$(a+b)^{2}-c^{2}=a b$
$a^{2}+b^{2}+2 a b-c^{2}=a b$
$a^{2}=b^{2}-c^{2}=-a b$
$\frac{\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}}{2 \mathrm{ab}}=-1 / 2 \therefore \cos C=-\frac{1}{2} \therefore \angle C=120$
$\therefore \mathrm{R}=\frac{\mathrm{C}}{2 \sin \mathrm{C}}$
$\therefore R=\frac{C}{2 \cdot \sin 120^{\circ}}=\frac{c}{2 \cdot\left(\frac{\sqrt{3}}{2}\right)}$
$\therefore r=\frac{C}{\sqrt{3}}$
8. The direction ratios of normal to the plane through the points ($0,-1,0$) and ($0,0,1$) and making an angle $\frac{\pi}{4}$ with the plane $y-z+5=0$ are :
(A) $2, \sqrt{2},-\sqrt{2}$
(B) $2,-1,1$
(C) $\sqrt{2}, 1,-1$
(D) $2 \sqrt{3}, 1,-1$

Sol. A, C

A($0,-1,0$)
$B(0,0,1)$
Points A \& B lies in the plane
$\therefore \overrightarrow{\mathrm{AB}}$ also lies m plane
$\overrightarrow{A B}=0 \hat{i}+\hat{j}+\hat{k}$
another plane P_{2} is $y-z+5=0$
$\therefore \overrightarrow{\mathrm{n}}_{2}=0 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$
Let plane is $a x+b y+c z+d=0$
$\vec{n}=a \hat{i}+b \hat{j}+c \hat{k}$
this $\overrightarrow{\mathrm{n}} \perp \overrightarrow{\mathrm{AB}}$
$\therefore \overrightarrow{\mathrm{n}} \cdot \overrightarrow{\mathrm{AB}}=0$
$a(0)+b(1)+c(1)=0$
$b+c=0$
$b=-c$
angle b/w planes is $\frac{\pi}{4}$
$\therefore \cos \frac{\pi}{4}=\left|\frac{\overrightarrow{\mathrm{n}} \cdot \overrightarrow{\mathrm{n}}_{2}}{|\overrightarrow{\mathrm{n}}|\left|\overrightarrow{\mathrm{n}}_{2}\right|}\right|$
$\frac{1}{\sqrt{2}}=\left|\frac{b-c}{\sqrt{a^{2}+b^{2}+c^{2}} \sqrt{2}}\right| \Rightarrow 1=\left|\frac{2 b}{\sqrt{a^{2}+2 b^{2}}}\right| \Rightarrow 4 b^{2}=a^{2}+2 b^{2}$
$a^{2}=2 b^{2}$
$a= \pm \sqrt{2} b$
or $a= \pm \sqrt{2} c$
\& b $=-\mathrm{c}$
\therefore Direction ratios are
$(\sqrt{2},-1,1)$ or $(\sqrt{2}, 1,-1)$
9. The value of r for which ${ }^{20} \mathrm{C}_{r}{ }^{20} \mathrm{C}_{0}+{ }^{20} \mathrm{C}_{\mathrm{r}-1}{ }^{20} \mathrm{C}_{1}+{ }^{20} \mathrm{C}_{r-2}{ }^{20} \mathrm{C}_{2}+\ldots .+{ }^{20} \mathrm{C}_{0}{ }^{20} \mathrm{C}_{r}$ is maximum, is :
(A) 15
(B) 20
(C) 11
(D) 10

Sol. B
${ }^{20} \mathrm{C}_{r}{ }^{20} \mathrm{C}_{0}+{ }^{20} \mathrm{C}_{\mathrm{r}-1}{ }^{20} \mathrm{C}_{1}+{ }^{20} \mathrm{C}_{\mathrm{r}-2}{ }^{20} \mathrm{C}_{2}+\ldots .+{ }^{20} \mathrm{C}_{0}{ }^{20} \mathrm{C}_{\mathrm{r}}$
$(1+x)^{20}(1+x)^{20}$
sum is ${ }^{40} C_{r}$
maximum when $r=20$
10. Two integers are selected at random from the set $\{1,2, \ldots, 11\}$. Given that the sum of selected numbers is even, the conditional probability that both the numbers are even is :
(A) $\frac{3}{5}$
(B) $\frac{7}{10}$
(C) $\frac{2}{5}$
(D) $\frac{1}{2}$

Sol. C
either both even or both odd
required probability $=\frac{{ }^{5} \mathrm{C}_{2}}{{ }^{5} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{2}}$
$=\frac{10}{10+15}=\frac{10}{25}=\frac{2}{5}$
11. Let $\left(-2-\frac{1}{3} i\right)^{3}=\frac{x+i y}{27}(i=\sqrt{-1})$, where x and y are real numbers, then $y-x$ equals :
(A) -85
(B) -91
(C) 91
(D) 85

Sol. C
$\left(-2-\frac{1}{3} i\right)^{3}=\frac{x+i y}{27}$
$\left(\frac{-6-i}{3}\right)^{3}=\frac{x+i y}{27}$

```
\(-\frac{(6+i)^{3}}{27}=\frac{(x+i y)}{27}\)
\(-\left(216+108 \mathrm{i}+18 \mathrm{i}^{2}+\mathrm{i}^{3}\right)=(\mathrm{x}+\mathrm{iy})\)
\(-(216+108 i-18-i)=(x+i y)\)
\(-(198+107 \mathrm{i})=x+i y\)
\(x=-198, y=-107\)
\(\therefore y-x=-107+198=91\)
```

12. Two circles with equal radii are intersecting at the points $(0,1)$ and $(0,-1)$. The tangent at the point $(0,1)$ to one of the circles passes through the centre of the other circle. Then the distance between the centres of these circles is:
(A) 1
(B) $\sqrt{2}$
(C) 2
(D) $2 \sqrt{2}$

Sol. C
In $\Delta \mathrm{C}_{1} \mathrm{PC}_{2}$
$r^{2}+r^{2}=\left(C_{1} C_{2}\right)^{2}$
$\left(C_{1} C_{2}\right)^{2}=2 r^{2}$
$C_{1} C_{2}=\sqrt{2} r$
In $\Delta \mathrm{C}_{1} \mathrm{MP}$
$r^{2}=1+\left(C_{1} M\right)^{2}$
$r^{2}=1+\left(\frac{\sqrt{2} r}{2}\right)^{2}$
$r^{2}=1+\frac{r^{2}}{2}$
$2 r^{2}-r^{2}-2=0$
$r=\sqrt{2}$
$\therefore C_{1} C_{2}=2$
13. If $x \log _{e}\left(\log _{e} x\right)-x^{2}+y^{2}=4(y>0)$, then $\frac{d y}{d x}$ at $x=e$ is equal to :
(A) $\frac{e}{\sqrt{4+\mathrm{e}^{2}}}$
(B) $\frac{(1+2 e)}{\sqrt{4+\mathrm{e}^{2}}}$
(C) $\frac{(1+2 e)}{2 \sqrt{4+e^{2}}}$
(D) $\frac{(2 e-1)}{2 \sqrt{4+e^{2}}}$

Sol. D

$x \log _{e}\left(\log _{e} x\right)-x^{2}+y^{2}=4,(y>0)$.
$\log _{e}\left(\log _{e} x\right)+x \cdot \frac{1}{\log _{e} x} \cdot \frac{1}{x}-2 x+2 y \cdot \frac{d y}{d x}=0$
put $x=e$
$\log _{e}\left(\log _{e} e\right)+e \cdot \frac{1}{\log _{e} e} \cdot \frac{1}{e}-2 e+2 y \cdot \frac{d y}{d x}=0$
$\log _{e}(1)+1-2 e+2 y \cdot \frac{d y}{d x}=0$
from equation (1) at $x=e$
$e \log _{e}\left(\log _{e} e\right)-e^{2}+y^{2}=4$
$y^{2}=4+e^{2}$
$y=\sqrt{4+e^{2}}$
put $y=\sqrt{4+\mathrm{e}^{2}}$ in equation (2)
$\therefore 1-2 e+2 \sqrt{4+\mathrm{e}^{2}} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=0$
$\frac{d y}{d x}=\frac{2 e-1}{2 \sqrt{4+e^{2}}}$
14. If q is false and $p \wedge q \leftrightarrow r$ is true, then which one of the following statements is a tautology ?
(A) $p \vee r$
(B) $(p \wedge r) \rightarrow(p \vee r)$
(C) $(p \vee r) \rightarrow(p \wedge r)$
(D) $p \wedge r$

Sol. B
q: F
$(\mathrm{p} \wedge \mathrm{q}) \leftrightarrow \mathrm{r}: T$

Case I

$\mathrm{p} \wedge \mathrm{q}: \mathrm{T}$ and $\mathrm{r}: \mathrm{T}$
It is not possible when $q: F$

Case II

$p \wedge q: F$ and $r: F$
$P: T$ or $F \quad q: F, r: F$

1. $p \vee r$

TVF:T
$f \vee f: f$
2. $(p \wedge r) \rightarrow(p \vee r)$
$T \wedge f \rightarrow T \vee F$
$\mathrm{F} \rightarrow \mathrm{T}: \mathrm{T}$
$F \wedge F \rightarrow F \vee F$
$F \rightarrow F: T$
3. $(p \vee r) \rightarrow(p \wedge r)$
$T \wedge f \rightarrow(T \wedge F)$
$T \rightarrow F: F$
$F \vee F \rightarrow F \wedge F$
$F \rightarrow F: T$
(4) $p \wedge r$

T^F:F
$T \wedge F: F$
15. Equation of a common tangent to the parabola $y^{2}=4 x$ and the hyperbola $x y=2$ is :
(A) $x+2 y+4=0$
(B) $x-2 y+4=0$
(C) $x+y+1=0$
(D) $4 x+2 y+1=0$

Sol. A
$y^{2}=4 x \& x y=2$.
for parabola $y^{2}=4 x$
let tangent is $y=m x+\frac{1}{m}$
it also touches hyperbola $x y=2$
\therefore solve (1) \& (2) \& apply $\mathrm{D}=0$
$x\left(m x+\frac{1}{m}\right)=2$
$m^{2} x^{2}-2 m+x=0 \Rightarrow D=0$
$(1)^{2}-4\left(m^{2}\right)(-2 m)=0$
$8 m^{3}=-1, m^{3}=-\frac{1}{8}$
$\mathrm{m}=-\frac{1}{2}$
\therefore common tangent is
$y=-\frac{1}{2} x+\frac{1}{(-1 / 2)}$
$y=-\frac{1}{2} x-2$
$x+2 y+4=0$
16. Let $a_{1}, a_{2}, \ldots, a_{10}$ be a GP. If $\frac{a_{3}}{a_{1}}=25$, then $\frac{a_{9}}{a_{5}}$ equals :
(A) 5^{4}
(B) 5^{3}
(C) $2\left(5^{2}\right)$
(D) $4\left(5^{2}\right)$

Sol. A

$a_{1}, a_{2}, \ldots, a_{10} \rightarrow G P$
a, ar, ar ${ }^{2}, \ldots \ldots, a r^{9} \rightarrow G P$
$\frac{a_{3}}{a_{1}}=25 \Rightarrow \frac{a^{2}}{a}=25$
$r= \pm 5$
$\frac{a_{9}}{a_{5}}=\frac{a r^{8}}{a r^{4}} \Rightarrow r^{4}$
$\therefore r^{4}=(25)^{2}=5^{4}$
17. The outcome of each of 30 itmes was observed; 10 items gave an outcome $\frac{1}{2}-d, 10$ items gave outcome $\frac{1}{2}$ each and the remaining 10 items gave outcome $\frac{1}{2}+d$ each. If the variance of this outcome data is $\frac{4}{3}$ then $|d|$ equals:
(A) $\sqrt{2}$
(B) $\frac{2}{3}$
(C) $\frac{\sqrt{5}}{2}$
(D) 2

Sol. A

variance is independent of origin shift data by $\frac{1}{2}$.
$\sum \frac{x_{i}^{2}}{n}-\left(\frac{\sum x_{i}}{n}\right)^{2}=$
$\frac{10 d^{2}+10 \times(0)^{2}+10 d^{2}}{30}-(0)^{2}=\frac{4}{3}$
$d^{2}=2 \Rightarrow|d|=\sqrt{2}$
18. If one real root of the quadratic equation $81 x^{2}+k x+256=0$ is cube of the other root, then a value of k is :
(A) 144
(B) -81
(C) 100
(D) -300

Sol. D
$81 x^{2}+k x+256=0$
roots are $\alpha \& \alpha^{3}$
$\alpha+\alpha^{3}=-\frac{k}{81}$
$\alpha^{4}=\frac{256}{81}$
$\alpha= \pm \frac{4}{3}$
$\therefore \alpha+\alpha^{3}=-\frac{k}{81}$
$\frac{4}{3}+\frac{64}{27}=-\frac{k}{81}$
$\therefore \mathrm{k}=-300$
19. If $\int \frac{\sqrt{1-x^{2}}}{x^{4}} d x=A(x)\left(\sqrt{1-x^{2}}\right)^{m}+C$, for a suitable chosen integer m and a function $A(x)$, where C is a constant of integration, then $(A(x))^{m}$ equals :
(A) $\frac{1}{9 x^{4}}$
(B) $\frac{1}{27 x^{6}}$
(C) $\frac{-1}{27 x^{9}}$
(D) $\frac{-1}{3 x^{3}}$

Sol. C
$\int \frac{\sqrt{1-x^{2}}}{x^{4}} d x=A(x)\left(\sqrt{1-x^{2}}\right)^{m}+C$
$\int \frac{x \sqrt{\frac{1}{x^{2}}-1}}{x^{4}} d x=A(x)\left(\sqrt{1-x^{2}}\right)^{m}+C$
$\operatorname{Put}\left(\frac{1}{x^{2}}-1\right)=t \Rightarrow \frac{d t}{d x}=\frac{-2}{x^{3}}$
$\therefore-\frac{1}{2} \int \sqrt{\mathrm{t}} \mathrm{dt} \Rightarrow \frac{-\mathrm{t}^{3 / 2}}{3}+\mathrm{C}$
$\Rightarrow \frac{\left(\sqrt{1-x^{2}}\right)^{3}}{-3 x^{2}}+C$
$\therefore A(x)=-\frac{1}{3 x^{3}} \quad \& m=3$
$A((x))^{3} \Rightarrow\left(-\frac{1}{3 x^{3}}\right)^{3}$
$=\frac{-1}{27 x^{9}}$
20. The maximum value of the function $f(x)=3 x^{3}-18 x^{2}+27 x-40$ on the set $S=\left\{x \in R: x^{2}+30 \leq 11 x\right\}$ is :
(A) 122
(B) -122
(C) -222
(D) 222

Sol. A

$f(x)=3 x^{3}-18 x^{2}+27 x-40$
$f^{\prime}(x)=9 x^{2}-36 x+27$
$f^{\prime}(x)=9\left(x^{2}-4 x+3\right)$
$f^{\prime}(x)=9(x-1)(x-3)$
Now $S=\left\{x \in R, x^{2}+30-11 x \leq 0\right\}$
$=\{x \in R, x \in[5,6]\}$
\therefore where $\mathrm{x} \in[5,6], \mathrm{f}^{\prime}(\mathrm{x})$ is positive
$\therefore f(x)$ is increasing in [5,6]
\therefore max. value, $\mathrm{f}(6)=122$
21. The straight line $x+2 y=1$ meets the coordinate axes at A and B. A circle is drawn through A, B and the origin. Then the sum of perpendicular distances from A and B on the tangent to the circle at the origin is :
(A) $\frac{\sqrt{5}}{4}$
(B) $4 \sqrt{5}$
(C) $\frac{\sqrt{5}}{2}$
(D) $2 \sqrt{5}$

Sol. C

$x+2 y=1$

equation of circle
$(x-1)(x-0)+(y-0)(y-1 / 2)=0$
$x^{2}+y^{2}-x-\frac{y}{2}=0$
Tangent at $(0,0)$ is
From $\mathrm{T}=0$
$0+0-\left(\frac{x+0}{2}\right)-\frac{1}{2}\left(\frac{y+0}{2}\right)=0 \Rightarrow 2 x+y=0$
$\mathrm{p}_{1}+\mathrm{p}_{2}=\left|\frac{0+\frac{1}{2}}{\sqrt{5}}\right|+\left|\frac{2+0}{\sqrt{5}}\right|=\frac{1}{2 \sqrt{5}}+\frac{2}{\sqrt{5}}$
$\mathrm{p}_{1}+\mathrm{p}_{2}=\frac{5}{2 \sqrt{5}} \Rightarrow \mathrm{p}_{1}+\mathrm{p}_{2}=\frac{\sqrt{5}}{2}$
22. The plane containing the line $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z-1}{3}$ and also contiaining its projection on the plane $2 x+3 y-z=5$, contains which one of the following points ?
(A) $(-2,2,2)$
(B) $(0,-2,2)$
(C) $(2,0,-2)$
(D) $(2,2,0)$

Sol. C
line. $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z-1}{3} \& P_{1} \equiv 2 x+3 y-z=5$
$\overline{\mathrm{b}}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}} \quad \therefore \overline{\mathrm{n}}_{1}=2 \hat{\mathrm{i}}+3 \hat{j}-\hat{\mathrm{k}}$
normal vector of required plane is \perp to $\overline{\mathrm{b}} \& \overline{\mathrm{n}}_{1}$
$\therefore \overrightarrow{\mathrm{n}}=\overline{\mathrm{b}} \times \overline{\mathrm{n}}_{1}$
$\bar{n}=-8 \hat{i}+8 \hat{j}+8 \hat{k}$
\therefore D.R.'s of \bar{n} of required plane are $-1,1,1$
\therefore equation of required plane is
$-1(x-3)+1(y+2)+1(z-1)=0$
$-x+y+z+4=0$
$x-y-z-4=0$
it is the required plane
Now check options
23. Let $[x]$ denote the greatest integer less than or equal to x. then :
$\lim _{x \rightarrow 0} \frac{\tan \left(\pi \sin ^{2} x\right)+(|x|-\sin (x[x]))^{2}}{x^{2}}$
(A) does not exist
(B) equals 0
(C) equals $\pi+1$
(D) equals π

Sol. A
RHL
$\lim _{x \rightarrow 0^{+}} \frac{\tan \left(\pi \sin ^{2} x\right)+(|x|-\sin (x[x]))^{2}}{x^{2}}$
where $x \rightarrow 0^{+},[x]=0$
$\therefore \lim _{x \rightarrow 0^{+}} \frac{\tan \left(\pi \sin ^{2} x\right)+\mathrm{x}^{2}}{\mathrm{x}^{2}}$
$\lim _{x \rightarrow 0^{+}}\left(\frac{\tan \left(\pi \sin ^{2} x\right)}{\left(\pi \sin ^{2} x\right)} \times \frac{\left(\pi \sin ^{2} x\right)}{x^{2}}\right)+1$
\therefore RHL $=\pi+1$
LHL
$\lim _{x \rightarrow 0^{-}} \frac{\tan \left(\pi \sin ^{2} x\right)+(|x|-\sin (x[x]))^{2}}{x^{2}}$
as $x \rightarrow 0^{+},[x]=-1$
$\therefore \lim _{x \rightarrow 0^{-}} \frac{\tan \left(\pi \sin ^{2} x\right)+(-x+\sin x)^{2}}{x^{2}}$
$\lim _{x \rightarrow 0^{-}}\left(\frac{\tan \left(\pi \sin ^{2} x\right)}{\left(\pi \sin ^{2} x\right)} \times \frac{\left(\pi \sin ^{2} x\right)}{x^{2}}\right)+\left(\frac{\sin x}{x}\right)^{2}-1$
\therefore LHS $=\pi$
$\therefore \mathrm{RHL} \neq \mathrm{LHL}$
\therefore Limit does not exist
24. The value of the integral $\int_{-2}^{2} \frac{\sin ^{2} x}{\left[\frac{x}{\pi}\right]+\frac{1}{2}} d x$ (where $[x]$ denotes the greatest integer less than or equal to x) is :
(A) $\sin 4$
(B) 4
(C) $4-\sin 4$
(D) 0

Sol. D
$I=\int_{-2}^{2} \frac{\sin ^{2} x}{\left[\frac{x}{\pi}\right]+\frac{1}{2}} d x$
$I=\int_{0}^{2}\left(\frac{\sin ^{2} x}{\left[\frac{x}{\pi}\right]+\frac{1}{2}}+\frac{\sin ^{2}(-x)}{\left[-\frac{x}{\pi}\right]+\frac{1}{2}}\right) d x$
$\left(\left[\frac{\mathrm{x}}{\pi}\right]+\left[\frac{-\mathrm{x}}{\pi}\right]=-1\right.$ as $\left.\mathrm{x} \neq \mathrm{n} \pi\right)$
$I=\int_{0}^{2}\left(\frac{\sin ^{2} x}{\left[\frac{x}{\pi}\right]+\frac{1}{2}}+\frac{\sin ^{2} x}{-1-\left[\frac{x}{\pi}\right]+\frac{1}{2}}\right) d x=0$
25. A square is inscribed in the circle $x^{2}+y^{2}-6 x+8 y-103=0$ with its sides parallel to the coordinates axes. Then the distance of the vertex of this square which is nearest to the origin is :
(A) 6
(B) $\sqrt{41}$
(C) $\sqrt{137}$
(D) 13

Sol. B

$x^{2}+y^{2}-6 x+8 y-103=0$
center $(3,-4), r=\sqrt{9+16+103}=\sqrt{128}=8 \sqrt{2}$
$C P=C R=C Q=C S=8 \sqrt{2}$
$R=\left(3+8 \sqrt{2} \cdot \frac{1}{\sqrt{2}},-4+8 \sqrt{2} \cdot \frac{1}{\sqrt{2}}\right)$

$R \equiv(11,4) \quad \therefore O R=\sqrt{137}$
$p \equiv\left(3-8 \sqrt{2} \cdot \frac{1}{\sqrt{2}},-4-8 \sqrt{2} \cdot \frac{1}{\sqrt{2}}\right)$
$P \equiv(-5,-12) \therefore O P=13$
$\therefore \mathrm{Q} \equiv(11,-12) \quad \& \mathrm{~S} \equiv(-5,4)$
$\therefore \mathrm{OQ}=\sqrt{265} \quad \therefore \mathrm{OS}=\sqrt{41}$
\therefore Minimum distance from origin is $\sqrt{41}$
26. Let $f: R \rightarrow R$ be defined by $f(x)=\frac{x}{1+x^{2}}, x \in R$. Then the range of f is
(A) $(-1,1)-\{0\}$
(B) $R-\left[-\frac{1}{2}, \frac{1}{2}\right]$
(C) $\left[-\frac{1}{2}, \frac{1}{2}\right]$
(D) $\mathrm{R}-[-1,1]$

Sol. C

$f(0)=0 \& f(x)$ is odd.

Further, If $x>0$ then
$f(x)=\frac{1}{x+\frac{1}{x}} \in\left(0, \frac{1}{2}\right]$
Hence, $f(x) \in\left[-\frac{1}{2}, \frac{1}{2}\right]$
27. Let $\vec{a}=\hat{i}+2 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}+\lambda \hat{j}+4 \hat{k}$ and $\vec{c}=2 \hat{i}+4 \hat{j}+\left(\lambda^{2}-1\right) \hat{k}$ be coplaner vectors. Then the non zero vector $\vec{a} \times \overrightarrow{\mathrm{c}}$ is :
(A) $-10 \hat{i}+5 \hat{j}$
(B) $-14 \hat{i}-5 \hat{j}$
(C) $-14 \hat{i}+5 \hat{j}$
(D) $-10 \hat{i}-5 \hat{j}$

Sol. A
$\vec{a}, \vec{b}, \vec{c}$ are coplanar
$\therefore[\vec{a} \vec{b} \vec{c}]$
$\left|\begin{array}{ccc}1 & 2 & 4 \\ 1 & \lambda & 4 \\ 2 & 4 & \lambda^{2}-1\end{array}\right|=0$
$\lambda\left(\lambda^{2}-1\right)-16-2\left(\lambda^{2}-1-8\right)+4(4-2 \lambda)=0$
$\lambda^{3}-\lambda-16-2 \lambda^{2}+18+16-8 \lambda$
$\lambda^{3}-2 \lambda^{2}-9 \lambda+18=0$
$I^{2}(\lambda-2)-9(\lambda-2)=0$
$(\lambda-2)\left(\lambda^{2}-9\right)=0$
$\lambda=2, \lambda= \pm 3$
Now $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$
$\vec{b}=\hat{i}+\lambda \hat{j}+4 \hat{k}$
$\overrightarrow{\mathrm{c}}=2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\left(\lambda^{2}-1\right) \hat{\mathrm{k}}$
when $\lambda= \pm 3$, $\overrightarrow{\mathrm{a}} \| \overrightarrow{\mathrm{c}} \quad \therefore \lambda \neq \pm 3$
$\therefore \lambda=2$
$\vec{c}=2 \hat{i}+4 \hat{j}+3 \hat{k}$
$\therefore \vec{a} \times \vec{c}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 4 \\ 2 & 4 & 3\end{array}\right|$
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{c}}=-10 \hat{\mathrm{i}}+5 \hat{j}$
28. If tangents are drawn to the ellipse $x^{2}+2 y^{2}=2$ at all points on the ellipse other than its four vertices then the mid points of the tangents intercepted between the coordinates axes lie on the curve.
(A) $\frac{1}{2 x^{2}}+\frac{1}{4 y^{2}}=1$
(B) $\frac{x^{2}}{2}+\frac{y^{2}}{4}=1$
(C) $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$
(D) $\frac{1}{4 x^{2}}+\frac{1}{2 y^{2}}=1$

Sol. A

Equation of generel tangent on ellipse
$\frac{x}{a \sec \theta}+\frac{y}{b \operatorname{cosec} \theta}=1$
$a=\sqrt{2}, b=1$
$\Rightarrow \frac{x}{\sqrt{2} \sec \theta}+\frac{y}{\operatorname{cosec} \theta}=1$
let the midpoint be (h, k)
$h=\frac{\sqrt{2} \sec \theta}{2} \Rightarrow \cos \theta=\frac{1}{\sqrt{2} h}$
and $\mathrm{k}=\frac{\operatorname{cosec} \theta}{2} \Rightarrow \sin \theta=\frac{1}{2 \mathrm{k}}$
$\because \sin ^{2} \theta+\cos ^{2} \theta=1$
$\Rightarrow \frac{1}{2 \mathrm{~h}^{2}}+\frac{1}{4 \mathrm{k}^{2}}=1$
$\Rightarrow \frac{1}{2 x^{2}}+\frac{1}{4 y^{2}}=1$
29. The sum of the real values of x for which the middle term in the binomial expansion of $\left(\frac{x^{3}}{3}+\frac{3}{x}\right)^{8}$ equals 5670 is :
(A) 0
(B) 8
(C) 6
(D) 4

Sol. A

$\mathrm{T}_{5}={ }^{8} \mathrm{C}_{4} \frac{\mathrm{x}^{12}}{81} \times \frac{81}{\mathrm{x}^{4}}=5670$
$\Rightarrow 70 x^{8}=5670$
$\Rightarrow x= \pm \sqrt{3}$
30. Let $f_{k}(x)=\frac{1}{k}\left(\sin ^{k} x+\cos ^{k} x\right)$ for $k=1,2,3 \ldots$. . Then for all $x \in R$, the value of $f_{4}(x)-f_{6}(x)$ is equal to :
(A) $\frac{1}{4}$
(B) $\frac{1}{12}$
(C) $\frac{-1}{12}$
(D) $\frac{5}{12}$

Sol. B
$f_{4}(x)-f_{6}(x)$
$=\frac{1}{4}\left(\sin ^{2} x+\cos ^{4} x\right)-\frac{1}{6}\left(\sin ^{6} x+\cos ^{6} x\right)$
$=\frac{1}{4}\left(1-\frac{1}{2} \sin ^{2} 2 x\right)-\frac{1}{6}\left(1-\frac{3}{4} \sin ^{2} 2 x\right)=\frac{1}{12}$

