

JEE (Advanced) 4626

JEE (Main)

662

NEET/AIIMS NTSE/OLYMPIADS 1066

(Under 50000 Rank)

(since 2016)

(5th to 10th class)

Toll Free: 1800-212-1799

H.O.: 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in |⊠: info@motion.ac.in

[PHYSICS]

- 1. The eye can be regarded as a single refracting surface. The radius of curvature of this surface is equal to that of cornea (7.8 mm). This surface separates two media of refractive indices 1 and 1.34. Calculate the distance from the refracting surface at which a parallel beam of light will come to focus.
 - (A) 3.1 cm
- (B) 1 cm
- (C) 4.0 cm
- (D) 2 cm

Sol. A

$$\frac{1.34}{V} - \frac{1}{\infty} = \frac{1.34 - 1}{7.8}$$

- ∴ V = 30.7 mm
- 2. The modulation frequency of an AM radio station is 250 kHz, which is 10% of the carrier wave. If another AM station approaches you for license what broadcast frequency will you allot?

 (A) 2250 kHz

 (B) 2900 KHz

 (C) 2750 kHz

 (D) 2000 kHz
- Sol. D

$$f_{carrier} = \frac{250}{0.1} = 2500 \text{KHZ}$$

∴ Range of signal = 2250 KHz to 2750 KHz

Now check all options: for 2000 KHZ

 $f_{mod} = 200 \text{ KHz}$

- ∴ Range = 1800 KHZ to 2200 KHZ
- 3. A particle executes simple harmonic motion with an amplitude of 5 cm. When the particle is at 4 cm from the mean position, the magnitude of its velocity is SI units is equal to that of its acceleration. Then, its periodic time in second is -

(A)
$$\frac{3}{8}\pi$$

(B)
$$\frac{7}{3}\pi$$

(C)
$$\frac{4\pi}{3}$$

(D)
$$\frac{8\pi}{3}$$

Sol. [

$$V = \omega \sqrt{A^2 - x^2}$$

$$a = -\omega^2 x$$

$$|V| = |a|$$

$$\omega\sqrt{A^2-x^2}\,=\,\omega^2 x$$

$$A^2 - x^2 = \omega^2 x^2$$

$$5^2 - 4^2 = \omega^2(4^2)$$

$$\Rightarrow$$
 3 = $\omega \times 4$

$$T = 2\pi/\omega$$

4. Consider a Young's double slit experiment as shown in figure. what should be the slit separation d in terms of wavelength λ such that the first minima occurs directly in front of the slit (S₁)?

- (A) $\frac{\lambda}{(5-\sqrt{2})}$ (B) $\frac{\lambda}{2(5-\sqrt{2})}$
- (C) $\frac{\lambda}{2(\sqrt{5}-2)}$ (D) $\frac{\lambda}{(\sqrt{5}-2)}$

Sol.

$$\sqrt{5}d - 2d = \frac{\lambda}{2}$$

- 5. A cylindrical plastic bottle of negligible mass is filled with 310 ml of water and left floating in a pond with still water. If pressed downward slightly and released, it starts performing simple harmonic motion at angular frequency ω . if the radius of the bottle is 2.5 m then ω is close to : (density of water = 10^3 kg/m^3)
 - (A) 2.50 rad s^{-1}
- (B) 1.25 rad s⁻¹
- (C) 3.75 rad s⁻¹
- (D) 5.00 rad s^{-1}

Bonus Sol.

Extra Boyant force = δAxg

$$B_0 + B \times mg = ma$$

$$a = \left(\frac{\delta Ag}{m}\right)^x$$

$$w^2 = \frac{\delta Ag}{m}$$

$$w = \sqrt{\frac{10^3 \times \pi (2.5)^2 \times 10^{-4} \times 10}{310 \times 10^{-6} \times 10^3}}$$

$$=\sqrt{63.30}=7.95$$

- B₁+B √mg
- Two kg of a monoatomic gas is at a pressure of 4×10^4 N/m². The density of the gas is 8 kg/m³. 6. What is the order of energy of the gas due to its thermal motion?
 - (A) 10^3 J
- (B) 10^4 J
- (C) 10^6 J
- (D) 10⁵ J

Sol.

Thermal energy of N molecule = $N\left(\frac{3}{2}kT\right)$

$$=\frac{N}{N_A}\frac{3}{2}RT = \frac{3}{2}(nRT)$$

$$= \frac{3}{2} PV = \frac{3}{2} P \left(\frac{m}{8} \right)$$

$$= \frac{3}{2} \times 4 \times 10^4 \times \frac{2}{8} = 1.5 \times 10^4$$

A hoop and a solid cylinder of same mass and radius are made of a permanent magnetic material 7. with their magnetic moment parallel to their respective axes. But the magnetic moment of hoop is twice of solid cylinder. They are placed in a uniform magnetic field in such a manner that their magnetic moments make a small angle with the field. If the oscillation periods of hoop and cylinder are T_h and T_c respectively, then :

(A)
$$T_h = 1.5 T_C$$

(B)
$$T_h = T_C$$

(C)
$$T_h = 0.5 T_c$$

(D)
$$T_h = 2T_c$$

Sol.

$$T=2\pi\sqrt{\frac{I}{\mu B}}$$

$$T_h = 2\pi \sqrt{\frac{mR^2}{(2\mu)B}}$$

$$T_C = 2\pi \sqrt{\frac{1/2mR^2}{\mu B}}$$

8. Four equal point charges Q each are placed in the xy plane at (0, 2), (4, 2), (4, -2) and (0, -2). The work required to put a fifth charge Q at the origin of the coordinate system will be :

(A)
$$\frac{Q^2}{4\pi\epsilon_0}$$

(B)
$$\frac{Q^2}{4\pi\varepsilon_0} \left(1 + \frac{1}{\sqrt{3}}\right)$$

(C)
$$\frac{Q^2}{2\sqrt{2}\pi\epsilon_0}$$

(B)
$$\frac{Q^2}{4\pi\varepsilon_0} \left(1 + \frac{1}{\sqrt{3}}\right)$$
 (C) $\frac{Q^2}{2\sqrt{2}\pi\varepsilon_0}$ (D) $\frac{Q^2}{4\pi\varepsilon_0} \left(1 + \frac{1}{\sqrt{5}}\right)$

Sol.

Potential at origin =
$$\frac{KQ}{2} + \frac{KQ}{2} + \frac{KQ}{\sqrt{20}} + \frac{KQ}{\sqrt{20}}$$

(Potential at $\infty = 0$)

$$= KQ \left(1 + \frac{1}{\sqrt{5}}\right)$$

.. Work required to put a fifth charge Q at origin is equal to $\frac{Q^2}{4\pi\epsilon_n}\bigg(1+\frac{1}{\sqrt{\varsigma}}\bigg)$

- 9. The self induced emf of a coil is 25 volts. When the current in it is changed at uniform rate from 10 A to 25 A in 1 s, the change in the energy of the inductance is:
 - (A) 740 J
- (B) 637.5 J
- (C) 437.5 J
- (D) 540 J

Sol.

$$L\frac{di}{dt} = 25$$

$$L \times \frac{15}{1} = 25$$

$$L = \frac{5}{3}H$$

$$\Delta E = \frac{1}{2} \times \frac{5}{3} \times (25^2 - 10^2) = \frac{5}{6} \times 525 = 437.5J$$

- 10. A parallel plate capacitor having capacitance 12 pF is charged by a battery to a potential difference of 10 V between its plates. The charging battery is now disconnected and a porcelain slab of dielectric constant 6.5 is slipped between the plates. The work done by the capacitor on the slab
 - (A) 560 pJ
- (B) 692 pJ

- (C) 508 pJ
- (D) 600 pJ

Sol.

Initial energy of capacitor

$$U_i = \frac{1}{2} \frac{v^2}{c}$$

$$= \frac{1}{2} \times \frac{120 \times 120}{12} = 600J$$

Since battery is disconnected so charge remain same.

final charge of capacitor,

$$U_r = \frac{1}{2} \frac{v^2}{c}$$

$$= \frac{1}{2} \times \frac{120 \times 120}{12 \times 6.5} = 92$$

$$W + U_f = U_i$$

$$W = 508 J$$

11. Two identical spherical balls of mass M and radius R each are stuck on two ends of a rod of length 2R and mass M (see figure) The moment of inertia of the system about the axis passing perpendicularly thorugh the centre of the rod is:

- (A) $\frac{137}{15}$ MR² (B) $\frac{152}{15}$ MR²
- (C) $\frac{209}{15}$ MR²
- (D) $\frac{17}{15}$ MR²

Sol. A

For ball using parallel axis theorem.

$$I_{\text{ball}} = \frac{2}{5}MR^2 + M(2R)^2 = \frac{22}{5}MR^2$$

2 Balls so
$$\frac{44}{5}$$
 MR²

Irod = for rod
$$\frac{M(2R)^2}{R} = \frac{MR^2}{3}$$

$$I_{\text{system}} = I_{\text{Ball}} + _{\text{rod}}$$

$$=\frac{44}{5}MR^2+\frac{MR^2}{3}=\frac{137}{15}MR^2$$

- 12. The diameter and height of a cylinder are measured by a meter scale to be 12.6 ± 0.1 cm and 34.2 ± 0.1 cm, respectively. What will be the value of its volume in appropriate significant figures ? (A) 4300 ± 80 cm³ (B) 4260 ± 80 cm³ (C) 4264 ± 81 cm³ (D) 4264.4 ± 81.0 cm³
- Sol. B

$$\frac{\Delta V}{V} = 2\frac{\Delta d}{d} + \frac{\Delta h}{h} = 2 \left(\frac{0.1}{12.6}\right) + \frac{0.1}{34.2}$$

$$V = 12.6 \times \frac{\pi}{4} \times 314.2$$

13. The Wheatstone bridge shown in fig. here gets balanced when the carbon resistor used as R_1 has the colour code (orange, Red, Brown). The resistors R_2 and R_4 are 80 Ω and 40 Ω , respectively. Assuming that the colour code for the carbon resistors given their accurate values, the colour code for the carbon resistor, used as R_3 , would be :

- (A) Grey, Black, Brown
- (C) Red, Green, Brown

- (B) Brown, Blue, Brown
- (D) Brown, Blue, Black

Sol. I

$$R_1 = 32 \times 10 = 320$$

for wheat stone bridge

$$\Rightarrow \frac{R_1}{R_3} = \frac{R_2}{R_4}$$

$$\frac{320}{R_2} = \frac{80}{40}$$

Brown

- **14**. At some location on earth the horizontal component of earth's magnetic field is 18×10^{-6} T. At this location, magnetic needle of length 0.12 m and pole strength 1.8 Am is suspended from its midpoint using a thread, it makes 45° angle with horizontal in equilibrium. To keep this needle horizontal, the vertical force that should be applied at one of its ends is:
 - (A) $6.5 \times 10^{-5} \text{ N}$

(B) $1.8 \times 10^{-5} \text{ N}$

(C) $3.6 \times 10^{-5} \text{ N}$

(D) $1.3 \times 10^{-5} \text{ N}$

Sol.

$$\mu B \sin 45^\circ = F \frac{\ell}{2} \sin 45^\circ$$

$$F = 2g\mu B$$

- **15**. Two vectors \vec{A} and \vec{B} have equal magnitudes. The magnitude of $(\vec{A} + \vec{B})$ is 'n' times the magnitude of $(\vec{A} - \vec{B})$. The angle between $\,\vec{A}\,$ and $\,\vec{B}\,$ is :
 - (A) $\cos^{-1}\left[\frac{n-1}{n+1}\right]$

- (B) $\sin^{-1}\left[\frac{n-1}{n+1}\right]$ (C) $\sin^{-1}\left|\frac{n^2-1}{n^2+1}\right|$ (D) $\cos^{-1}\left|\frac{n^2-1}{n^2+1}\right|$

Sol.

$$|\vec{A} + \vec{B}| = 2a\cos\theta/2$$

....(1)

$$|\vec{A} - \vec{B}| = 2a\cos\frac{(\pi - \theta)}{2} = 2a\sin\theta/2$$

....(2)

$$\Rightarrow n \left(2a \cos \frac{\theta}{2} \right) = 2a \frac{\sin \theta}{2}$$

$$\Rightarrow \tan \frac{\theta}{2} = n$$

16. A particle starts from the origin at time t = 0 and moves along the positive x - axis. The graph of velocity with respect to time is shown in figure. What is the position of the particle at time t = 5 s?

(A) 10 m

- (B) 3 m
- (C) 9 m
- (D) 6 m

Sol. C

S = Area under graph

$$\frac{1}{2}\times2\times2+2\times2+3\times1=9m$$

17. A current of 2 mA was passed through an unknown resistor which dissipated a power of 4.4 W. Dissipated power when an ideal power supply of 11 V is connected across it is:

(A)
$$11 \times 10^{-5}$$
 W

(B)
$$11 \times 10^{-4} \text{ W}$$

(D)
$$11 \times 10^{-3} \text{ W}$$

(D)
$$11 \times 10^5 \text{ W}$$

Sol. A

$$P = I^2R$$

$$4.4 = 4 \times 10^{-6} R$$

$$R = 1.1 \times 10^6 \Omega$$

$$P' = \frac{11^2}{R} = \frac{11^2}{1.1} \times 10^{-6} = 11 \times 10^{-5} W$$

18. A particle which is experiencing a force, given by $\vec{F} = 3\vec{i} - 12\vec{j}$, undergoes a displacement $\vec{d} = 4\vec{i}$.

If the particle had a kinetic energy of 3 J at the beginning of the displacement, what is its kinetic energy at the end of the displacement?

Sol. C

Work done
$$= \vec{F}.\vec{d}$$

work energy theorem

$$W = \Delta K.E.$$

$$12 = K_f - 3$$

$$K_{\epsilon} = 15J$$

19. A closed organ pipe has a fundamental frequency of 1.5 kHz. The number of overtones that can be distinctly heard by a person with this organ pipe will be: (Assume that the highest frequency a person can hear is 20,000 Hz)

Sol. E

For closed organ pipe, resonate frequency is odd multiple of fundamental frequency.

$$\therefore$$
 (2n + 1) $f_0 \le 20,000$

 $(f_0 \text{ is fundamental frequency} = 1.5 \text{ KHz})$

:. Total number of overtone that can be heared is 7. (0 to 6).

20. Two forces P and Q, of magnitude 2F and 3F, respectively, are at angle θ with each other. If the force Q is doubled, then their resultant also gets doubled. Then, the angle θ is :

$$(A) 60^{\circ}$$

(B)
$$90^{\circ}$$

Sol. (

$$4F^2 + 9F^2 + 12 F^2 \cos \theta = R^2$$

$$4F^2 + 36F^2 + 24F^2 \cos \theta = 4R^2$$

$$4F^2 + 36F^2 + 24 F^2 \cos \theta$$

$$=4(13F^2 + 12F^2\cos\theta) = 52F^2 + 48F^2\cos\theta$$

$$\cos\theta = -\frac{12F^2}{24F^2} = -\frac{1}{2}$$

21. A metal plate of area 1×10^{-4} m² is illuminated by a radiation fo intensity 16 mW/m². The work function of the metal is 5 eV. The energy of the incident photons is 10 eV and only 10 % of it produces photo electrons. The number of emitted photo electrons per second and their maximum energy, respectively, will be:

$$[1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}]$$

(A) 10^{11} and 5 eV

(B) 10¹⁰ and 5 eV

(C) 10¹⁴ and 10 eV

(D) 10^{12} and 5 eV

Sol. A

$$I = \frac{nE}{At}$$

$$16 \times 10^{-3} = \left(\frac{n}{t}\right)_{\text{photon}} \frac{10 \times 1.6 \times 10^{-19}}{10^{-4}} = 10^{12}$$

22. Two stars of masses 3×10^{31} kg each and at distance 2×10^{11} m rotate in a plane about their common centre of mass O. A meteorite passes through O moving perpendicular to the star's rotation plane. In order to escape from the gravitational field of this double star, the minimum speed that meteorite should have at O is :

(Take Gravitational constant)

$$G = 6.67 \times 10^{-11} \text{ Nm}^2 \text{ Kg}^{-2}$$

(A)
$$3.8 \times 10^4 \text{ m/s}$$

(B)
$$2.8 \times 10^5$$
 m/s

(C)
$$1.4 \times 10^5$$
 m/s

(D)
$$2.4 \times 10^4$$
 m/s

Sol. B

By energy convervation between 0 & ∞.

$$-\frac{GMm}{r} + \frac{-GMm}{r} + \frac{1}{2}mV^2 = 0 + 0$$

[M is mass of star m is mass of meteroite]

$$\Rightarrow V = \sqrt{\frac{4GM}{r}} = 2.8 \times 10^5 \text{m/s}$$

23. Consider the nuclear fission $Ne^{20} \rightarrow 2He^4 + C^{12}$

Given that the binding energy / nucleon of Ne^{20} , He^4 and C^{12} are, respectively, 8.03 MeV, 7.07 MeV and 7.86 MeV, identify the correct statement :

- (A) energy of 12.4 MeV will be supplied
- (B) energy of 3.6 MeV will be released
- (C) energy of 11.9 MeV has to be supplied
- (D) 8.3 MeV energy will be released
- Sol. C

Ne²⁰
$$\rightarrow$$
 2He⁴ + C¹²

$$8.03 \times 20$$
 $2 \times 7.07 \times 4 + 7.86 \times 12$

$$\therefore E_{B} = (BE)_{react} - (BE)_{product} = 9.72 \text{ MeV}$$

24. For the circuit shown below, the current through the Zener diode is :

(A) 9 mA

(B) 14 mA

(C) Zero

(D) 5 mA

Sol. A

Assuming zener diode doesnot undergo breakdown, current in circuit = $\frac{120}{15000}$ = 8mA

 \therefore Voltage drop across diode = 80 V > 50 V. The diode undergo breakdown.

Current is
$$R_1 = \frac{70}{5000} = 14 \text{mA}$$

Current is
$$R_2 = \frac{50}{10000} = 5\text{mA}$$

∴ Current through diode = 9mA

25. A rigid massless rod of length 3/ has two masses attached at each end as shown in the figure. The rod is pivoted at point P on the horizontal axis (see figure). When released from initial horizontal position, its instantaneous angular acceleration will be:

(A) $\frac{g}{2\ell}$

(B) $\frac{7c}{3\ell}$

(C) $\frac{g}{3\ell}$

(D) $\frac{g}{13\ell}$

Sol. D

Applying torque equation about point P.

$$2M_0(2I) - 5 M_0 gI = I\alpha$$

$$2M_0$$
 (2I) - 5 M_0 gl = $I\alpha$
 $I = 2 M_0$ (2I)² + 5 M_0 l² = 13 M_0 I²d

$$\therefore \qquad \alpha = -\frac{M_0 g \ell}{13 M_0 \ell^2} \Rightarrow \alpha = -\frac{g}{13 \ell}$$

$$\therefore \qquad \alpha = \frac{\mathsf{g}}{13\ell} \text{ anticlockwise}$$

26. The electric field of a plane polarized electromagnetic wave in free space at time t = 0 is given by an expression

$$\vec{E}(x, y) = 10 \hat{j} \cos[(6x + 8z)]$$

The magnetic field $\vec{B}(x,z,t)$ is given by : (c is the velocity of light)

(A)
$$\frac{1}{c}(6\hat{k} + 8\hat{i})\cos[(6x + 8z - 10ct)]$$

(B)
$$\frac{1}{c}(6\hat{k} - 8\hat{i})\cos[(6x + 8z - 10ct)]$$

(C)
$$\frac{1}{c}(6\hat{k} + 8\hat{i})\cos[(6x - 8z + 10ct)]$$

(D)
$$\frac{1}{c}(6\hat{k} - 8\hat{i})\cos[(6x + 8z + 10ct)]$$

Sol.

$$\vec{E} = 10\hat{j}\cos\left[\left(6\hat{i} + 8\hat{k}\right).\left(x\hat{i} + z\hat{k}\right)\right]$$

$$= 10\hat{j}\cos[\vec{K}.\vec{r}]$$

$$\hat{K} = 6\hat{i} + 8\hat{k}; \text{ direction of waves travel.}$$

i.e., direction of 'c'

$$\therefore$$
 Direction of \hat{B} will be along

$$\vec{C} \times \hat{E} = \frac{-4\hat{i} + 3\hat{k}}{5}$$

Mag. of \vec{B} will be along $\vec{C} \times \vec{E} = \frac{-4\hat{i} + 3\hat{k}}{5}$

Mag. of
$$\vec{B} = \frac{E}{C} = \frac{10}{C}$$

$$\therefore \vec{B} = \frac{10}{C} \left(\frac{-4\hat{i} + 3\hat{k}}{5} \right) = \frac{\left(-8\hat{i} + 6\hat{k} \right)}{C}$$

27. The actual value of resistance R, shown in the figure is $30\,\Omega$. This is measured in an experiment as shwon using the standard formula R = $\frac{V}{I}$, wehre V and I are the readings of the voltmeter and ammeter, respectively. If the measured value of R is 5 % less, then the internal resistance of the voltmeter is :

(A) 600 Ω

(B) 350Ω

(C) 570 Ω

(D) 35Ω

Sol. (

$$0.95R = \frac{RR_{v}}{R + R_{w}}$$

$$0.95 \times 30 = 0.05 \, R_{v}$$

 $R_{V} = 19 \times 30 = 570 \Omega$

28. Charges – q and + q located at A and B, respectively, constitute an electric dipole. Distance AB = 2a, O is the mid point of the dipole and OP is perpendicular to AB. A charge Q is placed at P where OP = y and y >> 2a. The charge Q experiences an electrostatic force F. If Q is now moved along

the equatorial line to P' such that $OP' = \left(\frac{y}{3}\right)$, the force on Q will be close to : $\left(\frac{y}{3} >> 2a\right)$

(A) $\frac{F}{3}$

(B) 27 F

(C) 9F

(D) 3 F

Sol. B

Electric field of equitorial plane of dipole

$$=-\frac{K\vec{P}}{r^3}$$

$$\therefore \text{ At P, F=-} \frac{\vec{KP}}{r^3} Q$$

At P¹, F¹=-
$$\frac{\vec{KPQ}}{(r/3)^3}$$
 = 27F

- 29. An unknown metal of mass 192 g heated to a temperature of 100° C was immersed into a brass calorimeter of mass 128 g containing 240 g of water at a temperature of 8.4 °C. Calculate the specific heat of the unknown metal if water temperature stablizes at 21.5 °C. (Specific heat of brass is 394 $J kg^{-1} K^{-1}$)
 - (A) 458 J Kg⁻¹ K⁻¹
 - (B) 1232 J Kg⁻¹ K⁻¹
 - (C) 916 J kg⁻¹ K⁻¹
 - (D) 654 J $kg^{-1} K^{-1}$
- Sol. C

$$= 128 \times 394 \times (21.5 - 8.4) + 240 \times 4200 \times (21.5 - 8.4)$$

- **30.** Half mole of an ideal monoatomic gas is heated at constant pressure of 1 atm from 20° C to 90° C. Work done by gas is close to : (Gas constant R = 8.31 J / Mole K)
 - (A) 291 J
- (B) 581 J
- (C) 146 J
- (D) 73 J

Sol. A

$$WD = P\Delta V = nR\Delta T = \frac{1}{2} \times 8.31 \times 70$$