

(Under 50000 Rank) (since 2016) (5th to 10th class)

Toll Free :
1800-212-1799

Nurturing potential through education
H.O. : 394, Rajeev Gandhi Nagar, Kota
www.motion.ac.in \boxtimes : info@motion.ac.in

[MATHEMATICS] 10-01-2019_Evening

1. Two vertices of a triangle are $(0,2)$ and $(4,3)$ If its orthocentre is at the origin, then its third vertex lies in which quadrant?
(A) fourth
(B) third
(C) first
(D) second

Sol. D

Equation of line $B C$ is $y=3$

$$
\Rightarrow k=3
$$

Eqaution of line $A C$ is $y-2=-\frac{4}{3}(x-0)$

$$
\begin{aligned}
& \Rightarrow 3 y+4 x=6 \\
& \text { Passes through }(h, 3) \\
& 9+4 h=6 \Rightarrow h=-\frac{3}{4}
\end{aligned}
$$

orthocentre is $=(-3 / 4,3)$ lie in second quadrent
2. The value of $\cot \left(\sum_{n=1}^{19} \cot ^{-1}\left(1+\sum_{p=1}^{n} 2 p\right)\right)$ is :
(A) $\frac{19}{21}$
(B) $\frac{23}{22}$
(C) $\frac{22}{23}$
(D) $\frac{21}{19}$

Sol. D
$\sum_{n=1}^{19} \cot ^{-1}\left(1+\sum_{p=1}^{n} 2 p\right)=\sum_{n=1}^{19} \cot ^{-1}[1+n(n+1)]$
$=\sum_{n=1}^{19} \tan ^{-1}\left[\frac{1}{1+n(n+1)}\right]$
$=\sum_{n=1}^{19} \tan ^{-1}\left[\frac{(n+1)-n}{1+n(n+1)}\right]$
$=\sum_{n=1}^{19} \tan ^{-1}(n+1)-\tan ^{-1} n$
$=\left(\tan ^{-1} 2-\tan ^{-1} 1\right)+\left(\tan ^{-1} 3-\tan ^{-1} 2\right)+\ldots \ldots \ldots+\left(\tan ^{-1} 20-\tan ^{-1} 19\right)$
$=\left(\tan ^{-1} 20-\frac{\pi}{4}\right)$
Now,
$\cot \left[\tan ^{-1} 20-\pi / 4\right]=\frac{1}{\tan \left[\tan ^{-1} 20-\pi / 4\right]}=\frac{1+(20)(1)}{20-1}=\frac{21}{19}$
3. The tangent to the curve, $y=x e^{x^{2}}$ passing through the point $(1, e)$ also passes through the point:
(A) $\left(\frac{5}{3}, 2 \mathrm{e}\right)$
(B) $(3,6 e)$
(C) $(2,3 e)$
(D) $\left(\frac{4}{3}, 2 \mathrm{e}\right)$

Sol. D
$\frac{d y}{d x}=e^{x^{2}} 1+x e^{x^{2}} .2 x$
$=\mathrm{e}^{\mathrm{x}^{2}}\left[1+2 \mathrm{x}^{2}\right]$
$\left(\frac{d y}{d x}\right)_{(1, e)}=3 e$
Equation of tagent $y-e=3 e(x-1)$ which passes though $\left(\frac{4}{3}, 2 e\right)$
4. Consider the following three statements:

P : 5 is prime number.
Q : 7 is a factor of 192.
R : L.C.M. of 5 and 7 is 35.
Then the truth value of which one of the following statements is true?
(A) $(\sim P) \wedge(\sim Q \wedge R)$
(B) $(\sim P) \vee(Q \wedge R)$
(C) $(P \wedge Q) \vee(\sim R)$
(D) $P \vee(\sim Q \wedge R)$

Sol.

P	Q	$\sim \mathrm{Q}$	R	$\sim \mathrm{Q} \wedge \mathrm{R}$	$\mathrm{P} \vee(\sim \mathrm{Q} \wedge \mathrm{R})$
T	F	T	T	T	T

5. If $\sum_{r=0}^{25}\left\{{ }^{50} C_{r} \cdot{ }^{.50-r} C_{25-r}\right\}=K\left({ }^{50} C_{25}\right)$ then K is equal to:
(A) 2^{24}
(B) 2^{25}
(C) 2^{25-1}
(D) $(25)^{2}$

Sol. B
$\sum_{r=0}^{25}{ }^{50} C_{r}{ }^{.50-r} C_{25-r}=k^{50} C_{25}$
$\sum_{r=0}^{25} \frac{\underline{50}}{|r| 50-r} \frac{\mid 50-r}{|25-r| 25}=k^{50} C_{25}$
$\sum_{r=0}^{25} \frac{|50| 25}{|r| 25-r} \frac{}{(\mid 25)(\mid 25)}=\mathrm{k} .{ }^{50} \mathrm{C}_{25}$
${ }^{50} \mathrm{C}_{25} \sum_{\mathrm{r}=0}^{25}{ }^{25} \mathrm{C}_{\mathrm{r}}=\mathrm{k}^{50} \mathrm{C}_{25} \Rightarrow{ }^{25} \mathrm{C}_{0}+{ }^{25} \mathrm{C}_{1}+\ldots \ldots .+{ }^{25} \mathrm{C}_{25}=\mathrm{k}$
$\Rightarrow \mathrm{K}=2^{25}$
6. The value of $\int_{-\pi / 2}^{\pi / 2} \frac{d x}{[x]+[\sin x]+4}$, where $[t]$ denotes the greatest integer less than or equal to t, is:
(A) $\frac{3}{20}(4 \pi-3)$
(B) $\frac{1}{12}(7 \pi+5)$
(C) $\frac{3}{10}(4 \pi-3)$
(D) $\frac{1}{12}(7 \pi-5)$

Sol. A

$$
\begin{aligned}
& \int_{-\frac{\pi}{2}}^{-1} \frac{\mathrm{dx}}{-2-1+4}+\int_{-1}^{0} \frac{\mathrm{dx}}{-1-1+4}+\int_{0}^{1} \frac{\mathrm{dx}}{4}+\int_{1}^{\pi / 4} \frac{\mathrm{dx}}{1+0+4} \\
& \Rightarrow(x)_{\pi / 2}^{-1}+\frac{1}{2}(x)_{-1}^{0}+\frac{1}{4}(x)_{0}^{1}+\frac{1}{5}(x)_{1}^{\pi / 2} \\
& \Rightarrow-1+\frac{\pi}{2}+\frac{1}{2}(1)+\frac{1}{4}(1)+\frac{1}{5}\left(\frac{\pi}{2}-1\right) \\
& \Rightarrow \frac{-1}{1}+\frac{\pi}{2}+\frac{1}{2}+\frac{1}{4}+\frac{\pi}{10}-\frac{1}{5}
\end{aligned}
$$

$\Rightarrow \frac{-20+10 \pi+10+5+2 \pi-4}{20}$
$\Rightarrow \frac{12 \pi-9}{20}$
7. The value of $\cos \frac{\pi}{2^{2}} \cdot \cos \frac{\pi}{2^{3}} \cdot \ldots \ldots \ldots \cos \frac{\pi}{2^{10}} \cdot \sin \frac{\pi}{2^{10}} \cdot$ is :
(A) $\frac{1}{256}$
(B) $\frac{1}{2}$
(C) $\frac{1}{1024}$
(D) $\frac{1}{512}$

Sol. D
Let $\frac{\pi}{2^{10}}=\theta$
$\frac{\pi}{2^{9}}=2 \theta$
$\left(\cos \theta \cos 2 \theta-\cos 2^{8} \theta\right) \sin \left(\pi / 2^{10}\right)$
$\frac{\sin \left(2^{9} \frac{\pi}{2^{10}}\right)}{2^{9} \sin \left(\frac{\pi}{2^{10}}\right)} \cdot \sin \left(\frac{\pi}{2^{10}}\right)$
$\Rightarrow \frac{\sin \left(\frac{\pi}{2}\right)}{2^{9}} \Rightarrow \frac{1}{2^{9}}$
8. Let N be the set of natural numbers and two functions f and g be defined as $f, g: N \rightarrow N$ such that $f(n)=\left\{\begin{array}{l}\frac{n+1}{2} \text { ifnisodd } \\ \frac{n}{2} \text { ifniseven }\end{array}\right.$ and $g(n)=n-(-1)^{n}$. Then fog is:
(A) both one-one and onto
(B) neither one-one nor onto
(C) one-one but not onto.
(D) onto but not one-one

Sol. D
$g(n)=\left[\begin{array}{ll}n+1, & n \text { odd } \\ n-1, & n \text { even }\end{array}\right.$
$n=1 \quad f(g(1))=f(2)=1$
$\mathrm{n}=2 \quad \mathrm{f}(\mathrm{g}(2))=\mathrm{f}(1)=1 \square$ Many one
$n=3 \quad f(g(3))=f(4)=2$
$n=4 \quad f(g(4))=f(3)=2$
This will give all values of the n
function is many one, onto functions
9. If $\int_{0}^{x} f(t) d t=x^{2}+\int_{x}^{1} t^{2} f(t) d t$ then $f^{\prime}(1 \backslash 2)$ is :
(A) $\frac{24}{25}$
(B) $\frac{4}{5}$
(C) $\frac{6}{25}$
(D) $\frac{18}{25}$

Sol. A

Diff. both sides
$f(x)=2 x+\left[0-x^{2} f(x)\right]$
$\Rightarrow \quad f(x)=\frac{2 x}{1+x^{2}}$
$f^{\prime}(x)=\frac{\left(1+x^{2}\right) 2-(2 x)(2 x)}{\left(1+x^{2}\right)^{2}}$
put $x=\frac{1}{2}$
$f^{\prime}\left(\frac{1}{2}\right)=\frac{2\left(\frac{5}{4}\right)-(4)\left(\frac{1}{4}\right)}{\left(1+\frac{1}{4}\right)^{2}}$
$=\frac{\left(\frac{5}{2}-1\right)}{\left(\frac{5}{4}\right)^{2}}$
$=\frac{24}{25}$
10. the positive value of λ for which the co-efficient of x^{2} in the expression $x^{2}\left(\sqrt{x}+\frac{\lambda}{x^{2}}\right)^{10}$ is, 720 , is:
(A) $\sqrt{5}$
(B) $2 \sqrt{2}$
(C) 4
(D) 3

Sol. C

$x^{2}\left[\sqrt{x}+\lambda / x^{2}\right]^{10}$
$x^{2}{ }^{10} C_{r}(\sqrt{x})^{10-r}\left(\lambda / x^{2}\right)^{r}$
${ }^{10} C_{r}(x){ }^{(5-r / 2)} \lambda^{r} x^{2-2 r}$
${ }^{10} C_{r} \lambda^{r} x^{(7-5 r / 2)} \quad$ for coff. of $x^{2}=7-\frac{5 r}{2}=2 \Rightarrow r=2$
$\Rightarrow{ }^{10} \mathrm{C}_{2} \lambda^{2}=720$
$\Rightarrow 45 \lambda^{2}=720 \Rightarrow \lambda^{2}=16 \Rightarrow \lambda=4$
11. The number of values of $\theta \in(0, \pi)$ for which the system of linear equations $x+3 y+7 z=0,-x+$ $4 y+7 z=0,(\sin 3 \theta) x+(\cos 2 \theta) y+2 z=0$ has a non-trivial solution, is:
(A) four
(B) three
(C) two
(D) one

Sol. C

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & 3 & 7 \\
-1 & 4 & 7 \\
\sin 3 \theta & \cos 2 \theta & 2
\end{array}\right|=0 \\
& \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2} \\
& \text { (7) }\left|\begin{array}{ccc}
0 & 1 & 2 \\
-1 & 4 & 7 \\
\sin 3 \theta & \cos 2 \theta & 2
\end{array}\right|=0 \\
& \text { (7) }[(2+7 \sin 3 \theta)+2(-\cos 2 \theta-4 \sin 3 \theta)]=0 \\
& \Rightarrow \quad 2+7 \sin 3 \theta-2 \cos 2 \theta-8 \sin 3 \theta=0 \\
& \Rightarrow \quad 2(1-\cos 2 \theta)=\sin 3 \theta \\
& \Rightarrow \quad 2.2 \sin ^{2} \theta=3 \sin \theta-4 \sin ^{3} \theta \\
& \Rightarrow \quad \sin \theta\left[3-4 \sin ^{2} \theta-4 \sin \theta\right]=0 \\
& \sin \theta \neq 0(\theta \in(0, \pi)) \Rightarrow 4 \sin ^{2} \theta+4 \sin \theta-3=0 \\
& \Rightarrow(2 \sin \theta+3)(2 \sin \theta-1) \\
& \Rightarrow \sin \theta=-\frac{3}{2}, \frac{1}{2} \\
& \sin \theta=-\frac{3}{2} \text { is not possible } \\
& \theta=\frac{\pi}{6}, \frac{5 \pi}{6}
\end{aligned}
$$

Number of values of θ is 2 .
12. Let $z=\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^{5}+\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^{5}$. If $R(z)$ and $I(z)$ respectively denote the real and imaginary parts of z, then :
(A) $R(z)=-3$
(B) $\mathrm{R}(\mathrm{z})<0$ and $\mathrm{I}(z)>0$
(C) $I(z)=0$
(D) $\mathrm{R}(\mathrm{z})>0$ and $\mathrm{I}(\mathrm{z})>0$

Sol. C

$Z=\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)^{5}+\left[\cos \left(-\frac{\pi}{6}\right)+\sin \left(-\frac{\pi}{6}\right)\right]^{5}$
$=\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}+\cos \left(\frac{5 \pi}{6}\right)+i \sin \left(-\frac{5 \pi}{6}\right)$
$=\cos \frac{5 \pi}{6}+i \sin \frac{\pi}{6}+\cos \frac{5 \pi}{6}+i \sin \left(-\frac{5 \pi}{6}\right)$
$\operatorname{Re}(Z)=-2 \frac{\sqrt{3}}{2} \quad I_{m}(z)=0$
13. The curve amongst the family of curves represented by the differential equation, $\left(x^{2}-y^{2}\right) d x+$ $2 x y \mathrm{dy}=0$ which passes through $(1,1)$, is:
(A) a circle with centre on the x-axis
(B) a circle with centre on the y-axis
(C) a hyperbola with transverse axis along the x-axis
(D) an ellipse with major axis along the y-axis

Sol. A

M-I $\quad\left(x^{2}-y^{2}\right) d x=-2 x y d y$
$\frac{d y}{d x}=\frac{y^{2}-x^{2}}{2 x y}$
$\frac{d y}{d x}=\frac{(y / x)^{2}-1}{2(y / x)}$
put $y / x=v$
$v+x \frac{d v}{d x}=\frac{v^{2}-1}{2 v}$
$x \frac{d v}{d x}=\frac{-1-v^{2}}{2 v}$
$\Rightarrow \int \frac{-2 v}{v^{2}+1} d v=\int \frac{d x}{x}$
$\Rightarrow-\ell n\left(v^{2}+1\right)=\ell n x+c$
$\Rightarrow-\ell n\left(y^{2} / x^{2}+1\right)=\ell n x+c-(1)$
passes through $(1,1)$
$-\ell \mathrm{n} 2=\mathrm{c}$
From (1)
$\ln (2)-\ln \left(\frac{y^{2}}{x^{2}}+1\right)=\ln x$
$\ln \left(\frac{2}{\frac{y^{2}}{x^{2}}+1}\right)=\ln x$
$\frac{2 x^{2}}{y^{2}+x^{2}}=x \quad \Rightarrow x^{2}+y^{2}=2 x$
circle which centre $=(1,0)$
M-II
$x^{2} d x=y^{2} d x-2 x y d y$
$\Rightarrow-d x=d\left(y^{2} / x\right)$
$\Rightarrow-x=y^{2} / x+c$
passes though $(1,1) \Rightarrow c=-2$
14. The plane which bisects the line segment joining the points $(-3,-3,4)$ and $(3,7,6)$ at right angles, passes through which one of the following points?
(A) $(4,-1,7)$
(B) $(-2,3,5)$
(C) $(2,1,3)$
(D) $(4,1,-2)$

Sol.

Direction ratios of Normal $=(6,10,2)$
equation of plane $\Rightarrow \bar{r} \cdot(6,10,2)=(0,2,5)(6,10,2)$

$$
\begin{aligned}
& \Rightarrow 6 x+10 y+2 z=20+10 \\
& \Rightarrow 3 x+5 y+z=15
\end{aligned}
$$

Which satisfy by point $(4,1,-2)$
15. Let $a_{1}, a_{2}, a_{3} \ldots, a_{10}$ be in G.P. with $a_{i}>0$ for $i=1,2 \ldots, 10$ and S be the set of pairs $(r, k), r, k \in N$ $\left|\begin{array}{lll}\log _{e} a_{1}{ }^{r} a_{2}{ }^{k} & \log _{e} a_{2}{ }^{r} a_{3}{ }^{k} & \log _{e} a_{3}{ }^{r} a_{4}{ }^{k} \\ \log _{e} a_{4}{ }^{r} a_{5}{ }^{k} & \log _{e} a_{5}{ }^{r} a_{6}{ }^{k} & \log _{e} a_{6}{ }^{r} a_{7}{ }^{k} \\ \log _{e} a_{7}{ }^{r} a_{8}{ }^{k} & \log _{e} a_{8}{ }^{r} a_{9}{ }^{k} & \log _{e} a_{9}{ }^{r} a_{10}{ }^{k}\end{array}\right|$

Then the number of elements in S, is:
(A) 10
(B) 2
(C) infinitely many
(D) 4

Sol. C
Let common ratios is $R \Rightarrow a_{3}=a_{4} R, a_{3}=a_{2} R$ Apply $C_{3} \rightarrow C_{3}-C_{2}, C_{2} \rightarrow C_{2}-C_{1}$
$\Delta=\left|\begin{array}{ccc}\ell n a_{1}{ }^{r} a_{2}{ }^{k} & \ell n(R)^{r+k} & \ell n R^{(r+k)} \\ \ell n a_{4}{ }^{r} a_{5}{ }^{k} & \ell n(R)^{r+k} & \ell n R^{(r+k)} \\ \ell n a_{7}{ }^{r} a_{8}{ }^{k} & \ell n(R)^{r+k} & \ell n R^{(r+k)}\end{array}\right|$
$\Delta=0 \rightarrow$ Infinite value satisfy this
16. Let $f:(-1,1) \rightarrow R$ be a function defined by $f(x)=\max \left\{-|x|, \sqrt{1-x^{2}}\right\}$. If K be the set of all points at which f is not differentiable, then K has exactly:
(A) three elements
(B) one element
(C) five elements
(D) two elements

Sol. A

not diff at $x= \pm \frac{1}{\sqrt{2}}, 0$
17. The length of the chord of the parabola $x^{2}=4 y$ having equation $x-\sqrt{2} y+4 \sqrt{2}=0$ is:
(A) $2 \sqrt{11}$
(B) $8 \sqrt{2}$
(C) $6 \sqrt{3}$
(D) $3 \sqrt{2}$

Sol. C

For parabola $x^{2}=4 a y$
length of chord is $=4 \sqrt{a\left(1+m^{2}\right)\left(a m^{2}+c\right)}$
From given chord $y=\frac{x}{\sqrt{2}}+4$

$|$| $x^{2}=4 y$ |
| :--- |
| $a=1$ |

Centre of chord $=4 \sqrt{(1)\left(1+\frac{1}{2}\right)\left(\frac{1}{2}+4\right)}$
$=4 \sqrt{\frac{3}{2}\left(\frac{9}{2}\right)} \quad=6 \sqrt{3}$
18. let f be a differentiable function such thast $f^{\prime}(x)=7-\frac{3}{4} \frac{f(x)}{x},(x>0)$ and $f(1) \neq 4$. Then $\lim _{x \rightarrow 0^{+}} x f\left(\frac{1}{x}\right)$:
(A) exists and equals 0 .
(B) exists and equals $\frac{4}{7}$
(C) does not exist.
(D) exists and equals 4.

Sol. D

$\frac{d y}{d x}+\frac{3}{4 x} y=7$
$P=\frac{3}{4 x}, Q=7$
I.f $=e^{\int \frac{3}{4 x} d x}=e^{\frac{3}{4} \ln x}=x^{3 / 4}$
$y\left(x^{3 / 4}\right)=\int 7 x^{3 / 4} d x$
$y x^{3 / 4}=7 \frac{x^{7 / 4}}{7 / 4}+C$
$\Rightarrow y=4 x+C x^{-3 / 4}$
$\lim _{x \rightarrow 0^{+}} x . f(1 / x)$
$\lim _{x \rightarrow 0^{+}}(x)\left[\frac{4}{x}+c x^{\frac{3}{4}}\right]=4$
19. If mean and standard deviation of 5 observation $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ are 10 and 3, respectively, then the variance of 6 observations $x_{1}, x_{2} \ldots \ldots x_{5}$, and -50 is equal to:
(A) 582.5
(B) 509.5
(C) 586.5
(D) 507.5

Sol. D

$\frac{x_{1}+x_{2}+x_{3}+x_{4}+x_{5}}{5}=10 \Rightarrow x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=50$
$\frac{\sum x_{1}^{2}}{5}-(\bar{x})^{2}=9 \Rightarrow x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}=545$
$\bar{x}_{\text {new }}=\frac{x_{1}+x_{2}+x_{3}+x_{4}+x_{5}-50}{6}=0$
Variance Now $\frac{\sum_{i=1}^{6} x_{1}{ }^{2}}{6}-\left(\bar{x}_{\text {new }}\right)^{2}$
$\Rightarrow \frac{\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+\mathrm{x}_{3}^{2}+\mathrm{x}_{4}^{2}+\mathrm{x}_{5}^{2}+2500}{6}$
$=507.5$
20. If $\int x^{5} e^{-4 x^{3}} d x=\frac{1}{48} e^{-4 x^{3}} f(x)+C$ where C is a constant of integration, then $f(x)$ is equal to:
(A) $-2 x^{3}+1$
(B) $-2 x^{3}-1$
(C) $4 x^{3}+1$
(D) $-4 x^{3}-1$

Sol. D

$$
\begin{aligned}
& \quad \int x^{2} \cdot x^{3} e^{-4 x^{3}} d x \quad 4 x^{3}=t \\
& \\
& \quad x^{2} d x=\frac{1}{12} d t \\
& \\
& \\
& \\
& \frac{1}{12} \int\left(\frac{t}{48}\right) e^{-t} d t \\
& \Rightarrow \quad \\
& \Rightarrow \quad \frac{-t e^{-t}}{48}-\frac{e^{-t}}{48}+c \text { replace } t \\
& \Rightarrow \quad \\
& \Rightarrow \quad \frac{e^{-4 x^{3}}}{48}\left[-\left(4 x^{3}+1\right)\right]+C \\
& \Rightarrow \quad \\
& \frac{\left(-4 x^{3}\right) e^{-4 x^{3}}-e^{-4 x^{3}}}{48}+c
\end{aligned}
$$

21. With the usual notation, in $\triangle A B C$, if $\angle A+\angle B=120^{\circ}, a=\sqrt{3}+1$ and $b=\sqrt{3}-1$, then the ratio $\angle \mathrm{A}: \angle \mathrm{B}$, is :
(A) $3: 1$
(B) $9: 7$
(C) $5: 3$
(D) $7: 1$

Sol. D
$A+B=120^{\circ}$

$$
\tan \frac{A-B}{2}=\frac{a-b}{a+b} \cot \left(\frac{C}{2}\right)
$$

$=\frac{\sqrt{3}+1-\sqrt{3}+1}{2(\sqrt{3})} \cot \left(30^{\circ}\right)=\frac{1}{\sqrt{3}} \cdot \sqrt{3}=1$

$$
\frac{A-B}{2}=45^{\circ} \quad \begin{aligned}
& A-B=90^{\circ} \\
& \frac{A+B=120^{\circ}}{2 A=210^{\circ}} \\
& A=105^{\circ} \\
& B=15^{\circ}
\end{aligned}
$$

22. If the probability of hitting a target by a shooter, in any shot, is $\frac{1}{3}$, then the minimum number of independent shots at the target required by him so that the probability of hitting the target
atleast once is greater than $\frac{5}{6}$, is:
(A) 3
(B) 6
(C) 5
(D) 4

Sol. C

$p(x)=\frac{1}{3}, p(\bar{x})=\frac{2}{3}$
at least are hit $=1-$ (no hit)
$\Rightarrow 1-\left(\frac{2}{3}\right)^{n}$
$1-\left(\frac{2}{3}\right)^{n}>5 / 6 \quad \Rightarrow \frac{1}{6}>\left(\frac{2}{3}\right)^{n}$
\min value of n is 5
23. On which of the following lines lies the point of intersection of the line, $\frac{x-4}{2}=\frac{y-5}{2}=\frac{z-3}{1}$ and the plane, $x+y+z=2$?
(A) $\frac{x-4}{1}=\frac{y-5}{1}=\frac{z-5}{-1}$
(B) $\frac{x-2}{2}=\frac{y-3}{2}=\frac{z+3}{3}$
(C) $\frac{x+3}{3}=\frac{4-y}{3}=\frac{z+1}{-2}$
(D) $\frac{x-1}{1}=\frac{y-3}{2}=\frac{z+4}{-5}$

Sol. D
Let the point one the line is $(2 \lambda+4,2 \lambda+5, \lambda+3)$ lie on plane
$(2 \lambda+4)+(2 \lambda+5)+(\lambda+3)-2=0$
$5 \lambda+10=0 \Rightarrow=-2$
\Rightarrow point of intersection $(0,1,1)$
Which lie on line D
24. Two sides of a parallelogram are along the lines, $x+y=3$ and $x-y+3=0$. If its diagonals intersect at $(2,4)$ then one of its vertex is:
(A) $(2,1)$
(B) $(3,6)$
(C) $(2,6)$
(D) $(3,5)$

Sol. B

(4-h, 5+h) lie on line $y=x+3$
$\Rightarrow 5+\mathrm{h}=4-\mathrm{h}+3 \Rightarrow 2 \mathrm{~h}=2$

$$
\mathrm{h}=1
$$

vertex B is $=(1,2)$
vertex D is $=(3,6)$
25. Let $S=\left\{(x, y) \in R^{2}: \frac{y^{2}}{1+r}-\frac{x^{2}}{1-r}=1\right\}$ where $r \neq \pm 1$. Then S represents:
(A) an ellipse whose eccentricity is $\frac{1}{\sqrt{r+1}}$ when $r>1$.
(B) a hyperbola whose eccentricity is $\frac{2}{\sqrt{r+1}}$, where $0<r<1$ \}
(C) an ellipse whose eccentricity is $\sqrt{\frac{2}{r+1}}$, when $r>1$.
(D) a hyperbola whose eccentricity is $\frac{2}{\sqrt{1-r}}$, when $0<r<1$.

Sol. C

$r \in(0,1)$ than $\frac{x^{2}}{1-r}-\frac{y^{2}}{1+r}=-1$
$e=\sqrt{1+\frac{1-r}{1+r}}=\sqrt{\frac{2}{1+r}} \rightarrow$ hyperbola
$r>1 \quad \frac{y^{2}}{1+r}-\frac{x^{2}}{1-r}=1 \rightarrow$ represent ellipse
$a^{2}=b^{2}\left(1-e^{2}\right) \Rightarrow r-1=(r+1)\left(1-e^{2}\right)$
$\Rightarrow e^{2}=-1\left(\frac{r-1}{r+1}\right)$
$e=\sqrt{\frac{2}{1+r}}$
26. Let $\vec{\alpha}=(\lambda-2) \vec{a}+\vec{b}$ and $\vec{\beta}=(4 \lambda-2) \vec{a}+3 \vec{b}$ be two given vectors where vectors \vec{a} and \vec{b} are noncollinear. The value of λ for which vectors $\vec{\alpha}$ and $\vec{\beta}$ are collinear, is:
(A) 3
(B) 4
(C) -4
(D) -3

Sol. C

$\vec{\alpha}$ and $\vec{\beta}$ are collinear
$\frac{\lambda-2}{4 \lambda-1}=\frac{1}{3}$
$\Rightarrow=-4$
27. If the area of an equilateral triangle inscribed in the circle, $x^{2}+y^{2} 10 x+12 y+c=0$ is $27 \sqrt{3}$ sq. units then C is equal to:
(A) 13
(B) -25
(C) 25
(D) 20

Sol. C
Let side of equilatrial $\Delta=\mathrm{a}$
$\sin 60^{\circ}=\frac{a / 2}{r}$

$=\Rightarrow \frac{\sqrt{3}}{2}=\frac{a}{2 r} \Rightarrow a=\sqrt{3} r$
$r=\sqrt{25+36-C}=\sqrt{61-C}$
area $\Rightarrow \frac{\sqrt{3}}{4} a^{2}=27 \sqrt{3}$
$\frac{\sqrt{3}}{4}(3)(61-C)=27 \sqrt{3}$
$\Rightarrow 61-C=36$
$\Rightarrow C=25$
28. Let $A=\left[\begin{array}{ccc}2 & b & 1 \\ b & b^{2}+1 & b \\ 1 & b & 2\end{array}\right]$ where $b>0$. Then the minimum value of $\frac{\operatorname{det}(A)}{b}$ is
(A) $\sqrt{3}$
(B) $-\sqrt{3}$
(C) $-2 \sqrt{3}$
(D) $2 \sqrt{3}$

Sol. D

$A=\left|\begin{array}{ccc}2 & b & 1 \\ b & b^{2}+1 & b \\ 1 & b & 2\end{array}\right|$
$\operatorname{det}(A)=b^{2}+3$
$\min ^{m}\left(\frac{\operatorname{det} A}{b}\right)=\min ^{m}(b+3 / b)$
$\frac{b+3 / b}{2} \geq \sqrt{b \cdot(3 / b)}$
$b+3 / b \geq 2 \sqrt{3}$
$\min ^{m}$ value $=2 \sqrt{3}$
29. A helicopter is flying along the curve given by $y-x^{3 / 2}=7,(x \geq 0)$. A soldier positioned at the point $\left(\frac{1}{2}, 7\right)$ wants to shoot down the helicopter when it is nearest to him. Then this nearest distance is :
(A) $\frac{1}{6} \sqrt{\frac{7}{3}}$
(B) $\frac{1}{2}$
(C) $\frac{\sqrt{5}}{6}$
(D) $\frac{1}{3} \sqrt{\frac{7}{3}}$

Sol. A
Let point p on curve is $=\left(t, 7+t^{3 / 2}\right)$
$\frac{d y}{d x}=\frac{3}{2} x^{1 / 2}$
$\left(\frac{d y}{d x}\right)\left(t_{1} 7+t^{3 / 2}\right)=\frac{3}{2} t^{1 / 2}$
slope of normal at P is $=-\frac{2}{3} \mathrm{t}^{-1 / 2}$
slope of $P Q$ is $=\frac{-t^{3 / 2}}{\frac{1}{2}-t}$
$\therefore \frac{-2}{3} \mathrm{t}^{-1 / 2}=\frac{-\mathrm{t}^{3 / 2}}{\frac{1}{2}-\mathrm{t}} \Rightarrow \frac{2}{3 \sqrt{\mathrm{t}}}=\frac{\mathrm{t} \sqrt{\mathrm{t}}}{\frac{1}{2}-\mathrm{t}}$
$\Rightarrow 3 \mathrm{t}^{2}+2 \mathrm{t}-1=0$
$\Rightarrow t=1 / 3$
Point $P=\left[\frac{1}{3}, 7+\left(\frac{1}{3}\right)^{3 / 2}\right]$
distane $=\frac{1}{6} \sqrt{\frac{7}{3}}$
30. The value of λ such that sum of the squares of the roots of the quadratic equation, $x^{2}+(3-\lambda) x$ $+2=\lambda$ has the least value is :
(A) 1
(B) 2
(C) $\frac{15}{8}$
(D) $\frac{4}{9}$

Sol. B

S $=\alpha^{2}+\beta^{2}$
$S=(\alpha+\beta)^{2}-2 \alpha \beta$
$\mathrm{S}=(3-\lambda)^{2}-2(2-\lambda)$
$S=\lambda^{2}-6 \lambda+9-4+2 \lambda$
$S=\lambda^{2}-4 \lambda+5$
$S=(\lambda-2)^{2}+1$
Minimum value occur when $\lambda=2$

