

(Under 50000 Rank) (since 2016) (5th to 10th class)

Motion
 Nurturing potential through education

H.O. : 394, Rajeev Gandhi Nagar, Kota
www.motion.ac.in \boxtimes : info@motion.ac.in

[CHEMISTRY]

1. The $71^{\text {st }}$ electron of an element X with an atomic number of 71 enters into the orbital:
(A) 5d
(B) $4 f$
(C) $6 p$
(D) 6 s

Sol. B
2. The ground state energy of hydrogen atom is -13.6 eV . The energy of second excited state of He^{+} ion in eV is:
(A) -54.4
(B) -27.2
(C)-6.04
(D)-3.4

Sol. C
$(E)_{n}^{t h}=\left(E_{G N D}\right)_{H} \cdot \frac{Z^{2}}{n^{2}}$
$E_{3 r d}\left(\mathrm{He}^{+}\right)=(-13.6 \mathrm{eV}) \cdot \frac{2^{2}}{3^{2}}=-6.04 \mathrm{eV}$
3. An ideal gas undergoes isothermal compression from $5 \mathrm{~m}^{3}$ to $1 \mathrm{~m}^{3}$ against a constant external pressure of $4 \mathrm{Nm}^{-2}$. Heat released in this process is used to increase the temperature of 1 mole of AI. If molar heat capacity of Al is $24 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, the temperature of Al increases of by:
(A) 2 k
(B) ${ }_{3}^{2} \mathrm{~K}$
(C) $\frac{3}{2} \mathrm{~K}$
(D) 1 K

Sol. B
Work done on isothermal irreversible for ideal gas
$=-P_{\text {ext }}\left(V_{2}-V_{1}\right)$
$=-4 \mathrm{~N} / \mathrm{m}^{2}\left(1 \mathrm{~m}^{3}-5 \mathrm{~m}^{3}\right)$
$=16 \mathrm{Nm}$
Isothermal process for ideal gas
$\Delta \mathrm{U}=0$
$\mathrm{q}=-\mathrm{w}$
$=-16 \mathrm{Nm}$
$=-16 \mathrm{~J}$
Heat used to increase temperature of $\mathrm{A} \ell$
$q=n C_{m} \Delta T$
$16 \mathrm{~J}=1 \times 24 \frac{\mathrm{~J}}{\mathrm{molK}} \times \Delta \mathrm{T}$
$\Delta T=\frac{2}{3} K$
4. The major product obtained in the following reaction is:

(A)

(B)

(C)

(D)

Sol. B
5. Among the following reactions of hydrogen with halogens, the one that requires a catalyst is:
(A) $\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}$
(B) $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$
(C) $\mathrm{H}_{2}+\mathrm{F}_{2} \rightarrow 2 \mathrm{HF}$
(D) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}$

Sol. D

Because reaction of H_{2} and I_{2} is Reversible in nature .
6. In the reaction of oxalate with permanganate in acidic medium, the number of electrons involved in producing one molecule of CO_{2} is:
(A) 1
(B) 2
(C) 10
(D) 5

Sol. A

$10 \mathrm{e} \oplus$ transfer 10 molecule of CO_{2} So per molecule of CO_{2} transfer of $\mathrm{e} \ominus$ is '1'
7. Which of the following tests cannot be used for identifying amino acids?
(A) Barfoed test
(B)Xanthoproteic test(
(C) Ninydrin test
(D)Biuret test

Sol. A
8. The pair that contains two $\mathrm{P}-\mathrm{H}$ bonds in each of the oxoacids is:
(A) $\mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{2}$
(B) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$
(C) $\mathrm{H}_{3} \mathrm{PO}_{2}$ and $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$
(D) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{H}_{3} \mathrm{PO}_{3}$

Sol. C
9. For an elementary chemical reaction, $A_{2} \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftharpoons}} 2 \mathrm{~A}$, the expression for $\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}$ is:
(A) $2 \mathrm{k}_{1}\left[\mathrm{~A}_{2}\right]-2 \mathrm{k}_{-1}[\mathrm{~A}]^{2}$
(B) $\mathrm{k}_{1}\left[\mathrm{~A}_{2}\right]-\mathrm{k}_{-1}[\mathrm{~A}]^{2}$
(C) $2 \mathrm{k}_{1}\left[\mathrm{~A}_{2}\right]-\mathrm{k}_{-1}[\mathrm{~A}]^{2}$
(D) $\mathrm{k}_{1}\left[\mathrm{~A}_{2}\right]+\mathrm{k}_{-1}[\mathrm{~A}]^{2}$

Sol. A
$A_{2} \underset{K_{-1}}{\stackrel{K_{1}}{\rightleftharpoons}} 2 A$
$\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=2 \mathrm{k}_{1}\left[\mathrm{~A}_{2}\right]-2 \mathrm{k}_{-1}[\mathrm{~A}]^{2}$
10. Elevation in the boiling point for 1 molal solution of glucose is 2 K . the depression in the freezing point for 2 molal solution of glucose in the same solvent is 2 K . The relation betweeen K_{b} and k_{f} is:
(A) $\mathrm{K}_{\mathrm{b}}=2 \mathrm{~K}_{\mathrm{f}}$
(B) $\mathrm{K}_{\mathrm{b}}=0.5 \mathrm{~K}_{\mathrm{f}}$
(C) $\mathrm{K}_{\mathrm{b}}=1.5 \mathrm{~K}_{\mathrm{f}}$
(D) $\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{f}}$

Sol. A
$\frac{\Delta T_{b}}{\Delta T_{f}}=\frac{i . m \times k_{b}}{i \times m \times k_{f}}$
$\frac{2}{2}=\frac{1 \times 1 \times \mathrm{k}_{\mathrm{b}}}{1 \times 2 \times \mathrm{k}_{\mathrm{f}}}$
$\mathrm{k}_{\mathrm{b}}=2 \mathrm{~K}_{\mathrm{f}}$
11. What is the IUPAC name of the following compound?

(A) 3-Bromo-3-methyl-1, 2-dimethylprop-1-ene
(B) 3-Bromo-1, 2-dimethylbut-1-ene
(C) 4-Bromo-3-methylpent-2-ene
(D) 2-Bromo-3-methylpent-3-ene

Sol. C

12. Sodium metal on dissolution in liquid ammonia gives a deep blue solution due to the formation of:
(A) ammoniated electrons
(B) sodium ion-ammonia complex
(C) sodium-ammonia complex
(D) sodamide

Sol. A

13. An aromatic compound ' A ' having molecular formula $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}$ on treating with aqueous ammonia and heating froms compound ' B '. The compound ' B ' on reaction with molecular bromine and potassium hydroxide provides compound ' C ' having molecular formula $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$. The structure of ' A ' is:
(A)

(B)

(C)

(D)

Sol. D
14. In the cell
$\mathrm{Pt}(\mathrm{s}) \mid \mathrm{H}_{2}(\mathrm{~g}, 1$ bar $)|\mathrm{HCl}(\mathrm{aq})| \mathrm{AgCl}(\mathrm{s})|\mathrm{Ag}(\mathrm{s})| \mathrm{Pt}(\mathrm{s})$
the cell potential is 0.92 V when a 10^{-6} molal HCl solution is used. The standard electrode potential of $\left(\mathrm{AgCl} / \mathrm{AgCl}^{-}\right)$electrode is:
(Given, $\frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.06 \mathrm{~V}$ at 298 K)
(A) 0.76 V
(B) 0.40 V
(C) 0.94 V
(D) 0.20 V

Sol. D
$\mathrm{Pt}(\mathrm{s}) \mid \mathrm{H}_{2}(\mathrm{~g}, 1$ bar $)|\mathrm{HCl}(\mathrm{aq})| \mathrm{AgCl}(\mathrm{s})|\mathrm{Ag}(\mathrm{s})| \mathrm{Pt}(\mathrm{s})$
Anode: $\quad \mathrm{H}_{2} \longrightarrow 2 \mathrm{H}^{+}+2 \mathrm{e} \times 1$
Cathode: $\quad e^{-}+\mathrm{AgCl}(\mathrm{s}) \longrightarrow \mathrm{Ag}(\mathrm{s})+\mathrm{Cl}^{-}(\mathrm{aq}) \times 2$

$$
\mathrm{H}_{2}(\mathrm{~g}) 1+\mathrm{AgCl}(\mathrm{~s}) \longrightarrow 2 \mathrm{H}^{+}+2 \mathrm{Ag}(\mathrm{~s})+2 \mathrm{Cl}^{-}(\mathrm{aq})
$$

$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\mathrm{o}}-\frac{0.06}{2} \log _{10}\left(\mathrm{H}^{+}\right)^{2}\left(\mathrm{Cl}^{-}\right)^{2}$
$.925=\left(\mathrm{E}_{\mathrm{H}_{2} / \mathrm{H}^{+}}^{0}+\mathrm{E}_{\mathrm{AgCl} / \mathrm{Ag} . \mathrm{Cl}} \mathrm{Cl}^{-}\right)-\frac{0.06}{2} \log _{10}\left(\left(10^{-6}\right)^{2}\left(10^{-6}\right)^{2}\right)$
$.92=0+\mathrm{E}_{\mathrm{AgCl} / \mathrm{Ag.Cl}} 0-0.031 \log _{10}\left(\log ^{-6}\right)^{4}$
$\mathrm{E}_{\mathrm{AgCl}}^{\circ} /{\mathrm{Ag}, \mathrm{Cl}^{-}}^{\circ}=.92+.03 \times-24=0.2 \mathrm{~V}$
15. A compound of formula $A_{2} B_{3}$ has the hcp lattice. Which atom forms the hcp lattice and what fraction of tetraherdal voids is occupied by the other atoms:
(A) hcp lattice-B, $\frac{2}{3}$ Tetrahedral viods-A
(B) hcp lattice-A, $\frac{2}{3}$ Tetrahedral viods-B
(C) hcp lattice-A, $\frac{1}{3}$ Tetrahedral viods-B
(D) hcp lattice-B, $\frac{1}{3}$ Tetrahedral viods-A

Sol. C
$\mathrm{A}_{2} \mathrm{~B}_{3}$ has HCP lattice
If A form HCP, then $\frac{3^{\text {th }}}{4}$ of THV must occupied by B to form $A_{2} B_{3}$
If B form HCP, then $\frac{1^{\text {th }}}{3}$ of THV must occupied by A to form $A_{2} B_{3}$
16. The difference in the number of unpaired electrons of a metal ion in its high-spin and low-spin octahedral complexes is two. The metal ion is:
(A) Mn^{2+}
(B) Fe^{2+}
(C) Co^{2+}
(D) Ni^{2+}

Sol. C
17. The major product of the following reaction is:

(A)

(B)

(C)

(D)

Sol. A/B (NTA)

18. What will be the major product in the following mononitration reaction?

(A)

(B)

(C)

(D)

Sol. D
19. $\quad 5.1 \mathrm{~g} \mathrm{NH}_{4} \mathrm{SH}$ is introduced in 3.0 L evacuated flask at $327^{\circ} \mathrm{C} .30 \%$ of the solid $\mathrm{NH}_{4} \mathrm{SH}$ decomposed to NH_{3} and $\mathrm{H}_{2} \mathrm{~S}$ as gases. The Kp of the reaction at $327^{\circ} \mathrm{C}$ is ($\mathrm{R}=0.082 \mathrm{~L}^{2}$ atm $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$, Molar mass of $\mathrm{S}=32 \mathrm{~g} \mathrm{~mol}^{-1}$, molar mass of $\mathrm{N}=14 \mathrm{~g} \mathrm{~mol}^{-1}$)
(A) $1 \times 10^{-4} \mathrm{~atm}^{2}$
(B) $4.9 \times 10^{-3} \mathrm{~atm}^{2}$
(C) $0.242 \times 10^{-4} \mathrm{~atm}^{2}$
(D) $0.242 \mathrm{~atm}^{2}$

Sol. D
$\mathrm{NH}_{4} \mathrm{SH}(\mathrm{s}) \quad \rightleftharpoons \quad \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
$\mathrm{n}=\frac{5.1}{51}=.1$ mole $0 \quad 0$
$.1(-1-\alpha) \quad .1 \alpha \quad .1 \alpha$
$\alpha=30 \%=.3$
so number of moles at equilibrium

$$
\begin{array}{rll}
& .1(1-.3) .1 \times .3 & .1 \times .3 \\
= & .07 & =.03 \\
=.03
\end{array}
$$

Now use PV = nRT at equilibrium
$\mathrm{P}_{\text {total }} \times 3$ lit $=(.03+.03) \times .082 \times 600$
$P_{\text {total }}^{\text {total }}=.984 \mathrm{~atm}$
At equilibrium
$\mathrm{P}_{\mathrm{NH}_{3}}=\mathrm{P}_{\mathrm{H}_{2} \mathrm{~S}}=\frac{\mathrm{P}_{\text {total }}}{2}=.492$
So $\quad \mathrm{K}_{\mathrm{p}}=\mathrm{P}_{\mathrm{NH} 3} \cdot \mathrm{P}_{\mathrm{H}_{2} \mathrm{~S}}=(.492)(.492)$
$\mathrm{K}_{\mathrm{p}}=.242 \mathrm{~atm}^{2}$
20. The reaction that is NOT involved in the ozone layer depletion mechanism in the stratosphere is:
(A) $\mathrm{Cl} \dot{\mathrm{O}}(\mathrm{g})+\mathrm{O}(\mathrm{g}) \rightarrow \dot{\mathrm{C}}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
(B) $\mathrm{HOCl}(\mathrm{g}) \xrightarrow{\mathrm{hu}} \dot{\mathrm{O}} \mathrm{H}(\mathrm{g})+\dot{\mathrm{C}} \mathrm{l}(\mathrm{g})$
(C) $\mathrm{CF}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \xrightarrow{u v} \dot{\mathrm{Cl}}(\mathrm{g})+\dot{\mathrm{C}} \mathrm{F}_{2} \mathrm{Cl}(\mathrm{g})$
(D) $\mathrm{CH}_{4}+2 \mathrm{O}_{3} \rightarrow 3 \mathrm{CH}_{2}=\mathrm{O}+3 \mathrm{H}_{2} \mathrm{O}$

Sol. D
21. Which is the most suitable reagent for the following transformation?

$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
(A) $\mathrm{CrO}_{2} \mathrm{Cl}_{2} / \mathrm{CS}_{2}$
(B) Tollen's reagent
(C) $\mathrm{I}_{2} / \mathrm{NaOH}$
(D) alkaline KMnO_{4}

Sol. C
22. The electrolytes usually used in the electroplating of gold and silver, respectively, are :
(A) $\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}$and $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$
(B) $\left[\mathrm{Au}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$and $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$
(C) $\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}$and $\left[\mathrm{Ag} \mathrm{Cl}_{2}\right]^{-}$
(D) $\left[\mathrm{Au}(\mathrm{OH})_{4}\right]^{-}$and $\left[\mathrm{Ag}(\mathrm{OH})_{2}\right]^{-}$

Sol. A

23. The process with negative entropy change is :
(A) Dissociation of CaSO_{4} (s) to CaO (s) and $\mathrm{SO}_{3}(\mathrm{~g})$
(B) Synthesis of ammonia from N_{2} and H_{2}
(C) Sublimation of dry ice
(D) Dissolution of iodine in water

Sol. B
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) ; \Delta \mathrm{n}_{\mathrm{g}}<0$
24. The number of 2-centre-2-electron and 3-centre-2-electron bonds in $\mathrm{B}_{2} \mathrm{H}_{6}$, respectively, are :
(A) 2 and 4
(B) 4 and 2
(C) 2 and 1
(D) 2 and 2

Sol. B
25. A reaction of cobalt (III) chloride and ethylenediamine in a $1: 2$ mole ratio generates two isomeric products A (violet coloured) and B (green coloured). A can show optical activity, but, B is optically inactive. What type of isomers does A and B represent ?
(A) Linkage isomers
(B) Coordination isomers
(C) Geometrical isomers
(D) Ionisation isomers

Sol. C

26. Haemoglobin adn gold sol are examples of :
(A) negatively charged sols
(B) positively and negatively charged sols, respectively
(C) positively charged sols
(D) negatively and positively charged sols, respectively

Sol. B
Haemoglobin \longrightarrow positive sol
$\mathrm{Ag} \quad$-sol \longrightarrow negative sol
27. The amount of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ required to prepare 2 L of its 0.1 M aqueous solution is :
(A) 136.8 g
(B) 68.4 g
(C) 17.1 g
(D) 34.2 g

Sol. B
Molarity $=\frac{(n)_{\text {solute }}}{V_{\text {solution }}(\text { in lit })}$
$0.1=\frac{w t / 342}{2}$
wt $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)=68.4$ gram
28. The major product of the following reaction is:

(A)

(B)

(C)

(D)

Sol. C
29. The correct match between item 'I' and item 'II' is :

Item 'I'
 Compound

Item 'II'
 reagent

(A) Lysine (P) 1-naphthol
(B) Furfural
(Q) ninhydrin
(C) Benzyl alcohol
(R) $\quad \mathrm{KMnO}_{4}$
(D) Styrene
(S) Ceric ammonium nitrate
(A) $\quad \mathrm{A} \rightarrow \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{R} ; \mathrm{D} \rightarrow \mathrm{S}$
(B) $\quad \mathrm{A} \rightarrow \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{R} ; \mathrm{C} \rightarrow \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{P}$
(C) $\quad \mathrm{A} \rightarrow \mathrm{R} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{Q} ; \mathrm{D} \rightarrow \mathrm{S}$
(D) $\quad \mathrm{A} \rightarrow \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{R}$

Sol. D
30. The major product of the following reaction is:

$\xrightarrow[\text { (ii) } \mathrm{CH}_{3} \mathrm{I}]{\text { (i) aq. } \mathrm{NaOH}}$
(A)

(B)

(C)

(D)

Sol. A

