

4626	13953	662	1066

Toll Free :
1800-212-1799

Motion

Nurturing potential through education
H.O. : 394, Rajeev Gandhi Nagar, Kota
www.motion.ac.in \boxtimes : info@motion.ac.in

[MATHEMATICS] 10-01-2019_Morning

1. The mean of five observations is 5 and their variance is 9.20 . if three of the given five observations are 1,3, and 8, then a ratio of other two observations is:
(A) $6: 7$
(B) $4: 9$
(C) $10: 3$
(D) $5: 8$

Sol. B
$1,3, x, x_{2}, 8 \rightarrow 5$ observer
Mean $=\frac{\sum x_{i}}{5}=5 \Rightarrow x_{1}+x_{2}=13$
var. $=\sigma^{2}=\frac{\sum x_{i}^{2}}{5}-25=9.20$
$\Rightarrow \sum x_{i}^{2}=171 \Rightarrow x_{1}^{2}+x_{2}^{2}=171-1-9-64$
$=97$
$\left(x_{1}+x_{2}\right)^{2}-2 x_{1} x_{2}=97$
$x_{1} x_{2}=36$
$x_{1}: x_{2}=4: 9$ as sum $=13 \& p r=36$
2. The sum of all two digit positive numbers which when divided by 7 yeild 2 or 5 as remainder is :
(A) 1465
(B) 1256
(C) 1356
(D) 1365

Sol. C

$$
\begin{aligned}
& \sum_{r=2}^{13}(7 r+2) \& \sum_{r=1}^{13}(7 r+5)=702 \\
& =654 \\
& \text { Total }=654+702=1356
\end{aligned}
$$

3. If the parabolas $y^{2}=4 b(x-c)$ and $y^{2}=8 a x$ have a common normal, then which one of the following is a valid choice for the ordered triad (a, b, c) ?
(A) $(1,1,3)$
(B) $\left(\frac{1}{2}, 2,3\right)$
(C) $\left(\frac{1}{2}, 2,0\right)$
(D) $(1,1,0)$

Sol. D
Parabola $y^{2}=4 b(x-c) \& y^{2}=3 a x$
have common normal other than x asix normals are :
$y=m(x-c)-2 b m-b m^{3}$
$y=m x-4 a m-2 a m^{3}$
$(C+2 b) m+b m^{3}=4 a m+2 a m^{3}$
$(4 a-C-2 b) m=(b-2 a) m^{3}$
$\Rightarrow \mathrm{m}^{2}=\frac{\mathrm{c}}{2 \mathrm{a}-\mathrm{b}}-2>0$
$\Rightarrow \frac{c}{2 a-b}>2$
only (4) option is true
4. Consider the quadratic equation ($c-5) x^{2}-2 c x+(c-4)=0, c \neq 5$. Let S be the set of all integral values of c for which one root of the equation lies in the interval $(0,2)$ and its other root lies in the interval $(2,3)$. Then the number of element in S is :
(A) 18
(B) 11
(C) 10
(D) 12

Sol. B

$f(0)(2)<0$
\& $f(2) f(3)<0$
$\Rightarrow(c-4)(c-24)<0 \&(c-24)(4 c-49)<0$
$\frac{49}{4}<\mathrm{C}<24$
$S=\{13,14,15,16 \ldots .23\} \Rightarrow$ No. $=11$
5. If the third term in the binomial expansion of $\left(1+x^{\log _{2} x}\right)^{5}$ equals 2560 , the a possible value of x is
(A) $\frac{1}{8}$
(B) $2 \sqrt{2}$
(C) $\frac{1}{4}$
(D) $4 \sqrt{2}$

Sol. C
$T_{3}{ }^{5} C_{2}\left(x^{\log _{2} x}\right)^{2}=2560$
$2\left(\log _{2} x\right)^{2}=\log _{2} 256=8$
$\log _{2} x=2$ or $-2 \Rightarrow 4$ or $\frac{1}{4}$
6. Let $I=\int_{a}^{b}\left(x^{4}-2 x^{2}\right) d x$. If I is minimum then the ordered pair (a, b) is :
(A) $(\sqrt{2},-\sqrt{2})$
(B) $(-\sqrt{2}, 0)$
(C) $(0, \sqrt{2})$
(D) $(-\sqrt{2}, \sqrt{2})$

Sol. D

as Area given is Negative so it will be Minimum when we take longest Integrative possible and in given option longest interval is (4)
7. Let $\vec{a}=2 \hat{i}+\lambda_{1} \hat{j}+3 \hat{k}, \vec{b}=4 \hat{i}+\left(3-\lambda_{2}\right) \hat{j}+6 \hat{k}$ and $\vec{c}=3 \hat{i}+6 \hat{j}+\left(\lambda_{3}-1\right) \hat{k}$ be three vectors such that $\vec{b}=2 \vec{a}$ and \vec{a} is perpendicular to \vec{c}. Then a possible value of $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ is :
(A) $(1,3,1)$
(B) $\left(\frac{1}{2}, 4,-2\right)$
(C) $(1,5,1)$
(D) $\left(-\frac{1}{2}, 4,0\right)$

Sol. B
(1) $4 \hat{i}+\left(3-\lambda_{2}\right) \hat{j}+6 \hat{k}$
$=4 \hat{i}+2 \lambda \hat{j}+6 \hat{k}$
$=3-\lambda_{2}=2 \lambda_{1} \Rightarrow 2 \lambda_{1}+\lambda_{2}=3$
(2) $\overrightarrow{\mathrm{a}} . \overrightarrow{\mathrm{c}}=0 \Rightarrow 6+6 \lambda_{1}+3\left(\lambda_{3}-1\right)=0$
$2 \lambda_{1}+\lambda_{3}=-1$
$\left(\lambda_{1}, 3-2 \lambda_{1},-1-2 \lambda_{1}\right)$ is $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$
by options (B) is correct
8. If the system of equations
$x+y+z=5$
$x+2 y+3 z=9$
$x+3 y+\alpha z=\beta$
has infinitely many solutions, then $\beta-\alpha$ equals:
(A) 5
(B) 21
(C) 18
(D) 8

Sol. D

(1) $D=\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & \alpha\end{array}\right|=(\alpha-1)-4=(\alpha-5)$
for ∞ solutions $D=0 \Rightarrow \alpha=5$
(2) Now
$D_{1}=\left|\begin{array}{lll}5 & 1 & 1 \\ 9 & 2 & 3 \\ \beta & 3 & 5\end{array}\right|=0 \Rightarrow 2+\beta-15=0$
$\beta=13$
(3) put $\beta=13$ in $D_{2}=\left|\begin{array}{ccc}1 & 5 & 1 \\ 1 & 9 & 3 \\ 1 & 13 & 5\end{array}\right|=0 \& D_{3}=\left|\begin{array}{ccc}1 & 1 & 5 \\ 1 & 2 & 9 \\ 1 & 3 & 13\end{array}\right|=0$
$\Rightarrow \beta-\alpha=13-5=8$
9. In a class of 140 students numbered 1 to 140 , all even numbered students opted Mathematics course, those whose number is divisible by 3 opted Physics course and those whose number is divisible by 5 opted Chemistry course. Then the number of students who did not opt for any of the three courses is:
(A) 42
(B) 102
(C) 38
(D) 1

Sol. C

$n(A)=$ No. of student taken maths $=70$
$n(B)=$ Physics $=46$
$\mathrm{n}(\mathrm{c})=$ chemistry $=28$
$n(A \cap B)=23$,
$\mathrm{n}(\mathrm{B} \cap \mathrm{C})=9, \mathrm{n}(\mathrm{A} \cap \mathrm{C})=14$
$\mathrm{n}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=4$,
$n(A \cup B \cup C)=n(A)+n(B)+n(C)-n(A \cap C)-n(B \cap C)-n(A \cap B)+n(A \cap B \cap C)$
$=70+46+28-23-9-14+4=102$
\Rightarrow Total $n(A \cup B \cup C)=140-102=38=$ Not opted any course
10. Consider a triangular plot $A B C$ with sides $A B=7 m, B C=5 \mathrm{~m}$ and $C A=6 \mathrm{~m}$. A vertical lamp - post at the mid point D of $A C$ subtends an angle 30° at B. The height (in m) of the lamp - post is :
(A) $2 \sqrt{21}$
(B) $\frac{2}{3} \sqrt{21}$
(C) $7 \sqrt{3}$
(D) $\frac{3}{2} \sqrt{21}$

Sol. B
$B D=h \cot 30^{\circ}=h \sqrt{3}$
So, $7^{2}+5^{2}=2\left((h \sqrt{3})^{2}+3^{2}\right)$
$\Rightarrow 37=3 h^{2}+9$.
$\Rightarrow 3 \mathrm{~h}^{2}=28$
$h=\sqrt{\frac{28}{3}}=\frac{2}{3} \sqrt{21}$

11. The sum of all values of $\theta \in\left(0, \frac{\pi}{2}\right)$ satisfying $\sin ^{2} 2 \theta+\cos ^{4} 2 \theta=\frac{3}{4}$ is :
(A) $\frac{3 \pi}{8}$
(B) π
(C) $\frac{\pi}{2}$
(D) $\frac{5 \pi}{4}$

Sol. c

$1-\cos ^{2}(2 \theta)+\cos ^{4}(2 \theta)=\frac{3}{4}$
$4 \cos ^{4}(2 \theta)-4 \cos ^{2}(2 \theta)+1=0$
$\left(2 \cos ^{2}(2 \theta)-1\right)^{2}=0$
$\cos ^{2}(2 \theta)=\frac{1}{2}=\cos ^{2} \frac{\pi}{4} \Rightarrow 2 \theta=n \pi \pm \frac{\pi}{4}$
$\theta=\frac{n \pi}{2} \pm \frac{\pi}{8}$
$\mathrm{n}=0$
$\theta=\frac{\pi}{8}, \frac{-\pi}{8}$ (Reject)
$\theta=\frac{\pi}{2}-\frac{\pi}{8}, \frac{\pi}{2}+\frac{\pi}{8}$ (Reject)
sum $=\frac{\pi}{2}-\frac{\pi}{8}+\frac{\pi}{8}=\frac{\pi}{2}$
12. Consider the statement: "P(n): $n^{2}-n+41$ is prime,. " then which one fo the following is true ?
(A) Both $P(3)$ and $P(5)$ are true
(B) $P(3)$ is false but $P(5)$ is true
(C) Both $P(3)$ and $P(5)$ are false
(D) $P(5)$ is false but $P(3)$ is true.

Sol. A
$p(n)=n^{2}-n+41$
$\mathrm{n}(5)=61$
$\mathrm{n}(3)=47$
13. If the area enclosed between the curves $y=k x^{2}$ and $x=k y^{2},(k>0)$ is 1 square unit. Then k is:
(A) $\frac{1}{\sqrt{3}}$
(B) $\frac{2}{\sqrt{3}}$
(C) $\frac{\sqrt{3}}{2}$
(D) $\sqrt{3}$

Sol. A
$\frac{\frac{1}{\mathrm{k}} \times \frac{1}{\mathrm{k}}}{3}=1$
$\frac{1}{\mathrm{k}^{2}}=3 \Rightarrow \mathrm{k}^{2}=\frac{1}{3} \Rightarrow \mathrm{k}=\frac{1}{\sqrt{3}}$
14. For each $t \in R$, let [t] be the greatest integer less than or equal to t. Then $\lim _{x \rightarrow 1+} \frac{(1-|x|+\sin |1-x|) \sin \left(\frac{\pi}{2}|1-x|\right)}{|1-x|[1-x]}$
(A) does not exist
(B) equals 1
(C) equals - 1
(D) equals 0

Sol. D

$\lim _{x \rightarrow 1+} \frac{(1-|x|+\sin |1-x|) \sin \left(\frac{\pi}{2}|1-x|\right)}{|1-x|[1-x]}$
$=\lim _{x \rightarrow 1^{+}} \frac{(1-x)+\sin (x-1)}{(x-1)(-1)} \sin \left(\frac{\pi}{2}(-1)\right)$
$=\lim _{x \rightarrow 1^{+}}\left(1-\frac{\sin (x-1)}{(x-1)}\right)(-1)=(1-1)(-1)=0$
15. The plane passing through the point $(4,-1,2)$ and parallel to the lines $\frac{x+2}{3}=\frac{y-2}{-1}=\frac{z+1}{2}$ and $\frac{x-2}{1}=\frac{y-3}{2}=\frac{z-4}{3}$ also passes through the point :
(A) $(1,1,-1)$
(B) $(-1,-1,1)$
(C) $(-1,-1,-1)$
(D) $(1,1,1)$

Sol. D
let \vec{n} be the normal vector to the plane passing through $(4,-1,2)$ and parallel to the lines L_{1} \& L_{2}
then $\vec{n}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 2 \\ 1 & 2 & 3\end{array}\right|$
$\therefore \vec{n}=-7 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}$
\therefore Equation of plane is
$-7(x-4)-7(y+1)+7(z-2)=0$
$\therefore \mathrm{x}+\mathrm{y}-\mathrm{z}-1=0$
Now check options
16. If the line $3 x+4 y-24=0$ intersects the x - axis at the point A and the $y-$ axis at the point B, then the incentre of the triangle $O A B$, where O is the origin, is :
(A) $(2,2)$
(B) $(4,3)$
(C) $(3,4)$
(D) $(4,4)$

Sol. A
$\frac{|3 r+4 r-24|}{5}=r \quad \Rightarrow \quad|7 r-24|=5 r$
$7 r-24= \pm 5 r$
$\Rightarrow r=2 \& 14 \Rightarrow(2,2)$

17. An unbiased coin is tossed. If the outcome is a head then a pair of unbiased dice is rolled and the sum of the numbers obtained. On them is noted. If the toss of the coin results in tail then a card from well - shuffled pack of nine cards numbered $1,2,3,4 \ldots, 9$ is randomly picked and the number on the card is noted. The probability that the noted number is either 7 or 8 is :
(A) $\frac{15}{72}$
(B) $\frac{13}{36}$
(C) $\frac{19}{36}$
(D) $\frac{19}{72}$

Sol.

$\frac{1}{2}$	\times	$\frac{11}{36}$	+	$\frac{1}{2}$
\uparrow	\uparrow	\uparrow	$\frac{2}{9}$	$\frac{19}{72}$
Head	dice	tail	\uparrow	
comes	has 7 or 8	comes		card has

18. Let $f(x)=\left\{\begin{array}{cc}\max \left\{|x|, x^{2}\right\}, & |x| \leq 2 \\ 8-2|x|, & 2<|x| \leq 4\end{array}\right.$. Let S be the set of points in the interval $(-4,4)$ at which f is not differentiable. Then S .
(A) equals $\{-2,-1,0,1,2\}$
(B) is an empty set
(C) equals $\{-2,2\}$
(D) equals $\{-2,-1,1,2\}$

Sol. A

$$
\left\{\begin{array}{cl}
8+2 x, & -4 \leq x<-2 \\
x^{2}, & -2 \leq x \leq-1 \\
|x|, & -1<x<1 \\
8-2 x, & 2<x \leq 4
\end{array}\right.
$$

$f(x)$ is not differentiable at $x==\{-2,-1,0,1,2\}$
$S=\{-2,-1,0,1,2\}$
19. Let $f: R \rightarrow R$ be a function such that $f(x)=x^{3}+x^{2} f^{\prime}(1)+x f^{\prime \prime}(2)+f^{\prime \prime \prime}(3), x \in R$. Then $f(2)$ equals :
(A) 30
(B) 8
(C) -2
(D) -4

Sol. C
$f(x)=x^{3}+x^{2} f^{\prime}(x)+x . f^{\prime \prime}(2)+f^{\prime \prime}(3), x \in R$
$f^{\prime}(x)=3 x^{2}+2 x f^{\prime}(1)+f^{\prime \prime}(2)$
$f^{\prime \prime}(x)=6 x+2 f^{\prime}(1) \& f^{\prime \prime}(x)=6$
Put $x=1$ in $f^{\prime}(x) \& x=2$ in $f^{\prime \prime}(x) \&$ find $f^{\prime}(1), f^{\prime \prime}(2)$
$\Rightarrow f^{\prime}(1)=3+2 f^{\prime}(1)+f^{\prime \prime}(2)$
$\left\{\begin{array}{l}f^{\prime}(1)=5 \\ f^{\prime \prime}(2)=2 \\ f^{\prime \prime}(3)=6\end{array}\right.$
$f^{\prime \prime}(2)=12+2 f^{\prime}(1)$
$f^{\prime}(x)=x^{3}-5 x^{2}+2 x+6$
$\Rightarrow f(2)=-2$
20. If $5,5 r, 5 r^{2}$ are the lengths of the sides of a triangle, then r cannot be equal to :
(A) $\frac{3}{4}$
(B) $\frac{7}{4}$
(C) $\frac{5}{4}$
(D) $\frac{3}{2}$

Sol. B
(1) $0<r<1$
$r+r^{2}>1$
$\left(r-\left(\frac{-1-\sqrt{5}}{2}\right)\right)\left(r-\left(\frac{-1+\sqrt{5}}{2}\right)\right)>0$
$\frac{\sqrt{5}-1}{2}<r<1$
(2) $r>1$
$r^{2}-r-1<0$
$\left(r-\left(\frac{1+\sqrt{5}}{2}\right)\right)\left(r-\left(\frac{1-\sqrt{5}}{2}\right)\right)<0$
$\frac{1-\sqrt{5}}{2}<r<\frac{1+\sqrt{5}}{2}$
$\left(1<\mathrm{r}<\frac{1+\sqrt{5}}{2}\right)$
$B y(A) \&(B)$
$r \in\left(\frac{-1+\sqrt{5}}{2}, 1\right) \cup\left(1, \frac{1+\sqrt{5}}{2}\right)$
21. The equation of a tangent to the hyperbola $4 x^{2}-5 y^{2}=20$ parallel to the line $x-y=2$ is :
(A) $x-y+9=0$
(B) $x-y-3=0$
(C) $x-y+7=0$
(D) $x-y+1=0$

Sol. D

$H: \frac{x^{2}}{5}-\frac{y^{2}}{4}=1$
equation of tangent $\Rightarrow y=m x \pm \sqrt{a^{2} m^{2}-b^{2}} \& m=1$
$y=x \pm \sqrt{5-4} \Rightarrow y=x \pm 1$
$x-y \pm 1=0$
22. Let z_{1} and z_{2} be any two non- zero complex numbers such that $3\left|z_{1}\right|=4\left|z_{2}\right|$. If $z=\frac{3 z_{1}}{2 z_{2}}+\frac{2 z_{2}}{3 z_{1}}$ then :
(A) $\operatorname{Im}(z)=0$
(B) $|z|=\sqrt{\frac{5}{2}}$
(C) $\operatorname{Re}(z)=0$
(D) $|z|=\frac{1}{2} \sqrt{\frac{17}{2}}$

Sol. Bonus(All options are wrong)

$\left|\frac{z_{1}}{z_{2}}\right|=\frac{4}{3} \Rightarrow\left|\frac{3 z_{1}}{2 z_{2}}\right|=\frac{3}{2} \times \frac{4}{3}$
using polar form :
$\frac{3 z_{1}}{2 z_{1}}=2 \operatorname{cis} \theta=2 \cos \theta+3 i \sin \theta$
$\frac{2 z_{2}}{3 z_{1}}=\frac{1}{2}\left(\frac{1}{\cos \theta+i \sin \theta}\right)=\frac{1}{2}(\cos \theta-i \sin \theta)$
$z=\frac{5}{2} \cos \theta+\frac{3}{2} i \sin \theta$
all options are wrong
23. A point P moves on the line $2 x-3 y+4=0$. if $Q(1,4)$ and $R(3,-2)$ are fixed points, then the locus of the centroid of $\triangle P Q R$ is a line :
(A) parallel to x - axis
(B) with slope $\frac{3}{2}$
(C) parallel to y - axis
(D) with slope $\frac{2}{3}$

Sol. D
$P=(\alpha, \beta)$
$\frac{\alpha+1+3}{3}=\mathrm{h} / \frac{\beta+4-2}{3}=\mathrm{k}$
$\alpha=(3 h-4), \beta=3 k-2 \&(\alpha, \beta)$
$2(3 h-4)-3(3 k-2)+4=0$
$6 x-9 y+2=0$
24. If $\frac{d y}{d x}+\frac{3}{\cos ^{2} x} y=\frac{1}{\cos ^{2} x}, x \in\left(\frac{-\pi}{3}, \frac{\pi}{3}\right)$ and $y\left(\frac{\pi}{4}\right)=\frac{4}{3}$, then $y\left(-\frac{\pi}{4}\right)$ equals :
(A) $\frac{1}{3}$
(B) $\frac{1}{3}+e^{6}$
(C) $\frac{1}{3}+\mathrm{e}^{3}$
(D) $-\frac{4}{3}$

Sol. B
(1) IF $=e^{3 \int \sec ^{2} x d x}=e^{3 \tan x}$
(2) $y \cdot e^{3 \tan x}=\int \sec ^{2} x \cdot e^{3 \tan x} d x$
$y \cdot e^{3 \tan x}=\frac{1}{3} e^{3 \tan x}+C \cdot\left(y\left(\frac{\pi}{4}\right)=\frac{4}{3}\right)$
$\Rightarrow \frac{4}{3} \cdot e^{3 \tan \frac{\pi}{4}}=\frac{1}{3} e^{3 \tan \frac{\pi}{4}}+C \Rightarrow C=e^{3}$
then $y\left(-\frac{\pi}{4}\right), y \cdot e^{-3}=\frac{1}{3} e^{-3}+e^{3}=\frac{1+3 e^{6}}{3 e^{3}} \Rightarrow y=\frac{1}{3}+e^{6}$
25. If $\sum_{i=1}^{20}\left(\frac{{ }^{20} C_{i-1}}{{ }^{20} C_{i}+{ }^{20} C_{i-1}}\right)^{3}=\frac{k}{21}$, then k equals :
(A) 100
(B) 50
(C) 200
(D) 400

Sol. A

$=\frac{1}{(21)^{3}}\left(\frac{(20)(21)}{2}\right)^{2}=\frac{k}{21}$
$\Rightarrow \mathrm{k}=100$
26. Let A be a point on the line $\vec{r}=(1-3 \mu) \hat{i}+(\mu-1) \hat{j}+(2+5 \mu) \hat{k}$ and $B(3,2,6)$ be a point in the space. Then the value of μ for which the vector $\overrightarrow{A B}$ is parallel to the plane $x-4 y+3 z=1$ is :
(A) $\frac{1}{8}$
(B) $\frac{1}{2}$
(C) $\frac{1}{4}$
(D) $\frac{-1}{4}$

Sol. $\vec{r}=\langle 1,-1,2\rangle+\mu<-3,+1,5\rangle$
$\frac{x-1}{-3}=\frac{y+1}{+1}=\frac{z-2}{5}=\mu=k$
A $<-3 k+1, k-1,5 k+2>$
\& $B=\langle 3,2,6>$
$\overrightarrow{A B}=\langle-3 k-2,+k-3,5 k-4\rangle$
then $1(-3 k-2)-4(k-3)+3(5 k-4)=0$
$k=\frac{1}{4}=\mu$
27. Let $d \in R$, and
$A=\left[\begin{array}{ccc}-2 & 4+d & (\sin \theta)-2 \\ 1 & (\sin \theta)+2 & d \\ 5 & (2 \sin \theta)-d & (-\sin \theta)+2+2 d\end{array}\right] \theta \in[0,2 \pi]$. If the minimum value of $\operatorname{det}(A)$ is 8 , then a value of d is :
(A) -7
(B) $2(\sqrt{2}+2)$
(C) $2(\sqrt{2}+1)$
(D) -5

Sol. D
$\operatorname{det} A=\left[\begin{array}{ccc}-2 & 4+d & (\sin \theta)-2 \\ 1 & (\sin \theta)+2 & d \\ 5 & (2 \sin \theta)-d & (-\sin \theta)+2+2 d\end{array}\right]$
$R_{1} \rightarrow R_{1}+R_{3}-2 R_{2}$
$=\left|\begin{array}{ccc}1 & 0 & 0 \\ 1 & \sin \theta+2 & d \\ 5 & 2 \sin \theta-d & 2+2 d-\sin \theta\end{array}\right|$
$\left.=d^{2}+4 d+4-\sin ^{2} \theta=(d+2)^{2}-\sin ^{2} \theta\right)$ min. at $\sin \theta=1$
$=(d+2)^{2}-1=8$ (given)
$d=1$ or -5
28. If a circle C passing through the point $(4,0)$ touches the circle $x^{2}+y^{2}+4 x-6 y=12$ externally at the point $(1,-1)$, then the radius of C is :
(A) $\sqrt{57}$
(B) 5
(C) $2 \sqrt{5}$
(D) 4

Sol. B
Let the centre of circle $(-2,3)$

F.O.T $\rightarrow x .1+y(-1)+2(x+1)-3(y-1)-12=0$
$3 x-4 y-7=0$
$\mathrm{m}_{\mathrm{T}}=\frac{3}{4}$
$\frac{\mathrm{k}-3}{\mathrm{~h}+2} \times \frac{3}{4}=-1\left(\therefore \mathrm{~m}_{\mathrm{T}} . \mathrm{m}_{\mathrm{N}}=-1\right)$
$k+3 h-7=0$
distance of (h, k) from $(-1,1)$ is equal to the distance from $(4,0)$
$(h-1)^{2}+(k+1)^{2}=(h-4)^{2}+(k-0)^{2}$
$-2 h+2 k+2=-8 h+16$
$-2 h+2 k+2=-8 h+16$
$6 h+2 k-14=0$
from equation (1) \& (2)
$h=4$
$\mathrm{k}=-5$
then radius
$r=\sqrt{(4-4)^{2}+(-5)^{2}} \Rightarrow r=5$
29. The shortest distance between the point $\left(\frac{3}{2}, 0\right)$ and the curve $y=\sqrt{x},(x>0)$ is :
(A) $\frac{3}{2}$
(B) $\frac{5}{4}$
(C) $\frac{\sqrt{5}}{2}$
(D) $\frac{\sqrt{3}}{2}$

Sol. C
Let $\operatorname{Pt}(\mathrm{t}, \sqrt{\mathrm{t}})$
distance formula using
$(t, \sqrt{t})-\left(\frac{3}{2}, 0\right)$
$Z=\left(t-\frac{3}{2}\right)^{2}+(\sqrt{t}-0)^{2}$
$\frac{\mathrm{dz}}{\mathrm{dt}}=2\left(\mathrm{t}-\frac{3}{2}\right)+1=0 \Rightarrow \mathrm{t}=1$
pt $=(1, \sqrt{1})=(1,1)$
Sh. distance $=\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{2}$
30. Let $\mathrm{n} \geq 2$ be a natural number and $0<\theta<\pi / 2$. Then $\int \frac{\left(\sin ^{\mathrm{n}} \theta-\sin \theta\right)^{\frac{1}{n}} \cos \theta}{\sin ^{n+1} \theta} \mathrm{~d} \theta$ is equal to : (where C is a constant of integration)
(A) $\frac{n}{n^{2}-1}\left(1+\frac{1}{\sin ^{n-1} \theta}\right)^{\frac{n+1}{n}}+C$
(B) $\frac{n}{n^{2}-1}\left(1-\frac{1}{\sin ^{n-1} \theta}\right)^{\frac{n+1}{n}}+C$
(C) $\frac{n}{n^{2}+1}\left(1-\frac{1}{\sin ^{n-1} \theta}\right)^{\frac{n+1}{n}}+C$
(D) $\frac{n}{n^{2}-1}\left(1-\frac{1}{\sin ^{n-1} \theta}\right)^{\frac{n+1}{n}}+C$

Sol. D

$\sin ^{n} \theta$ common :
$\int \frac{\sin \theta\left(1-\sin ^{1-n} \theta\right)^{1 / n} \cos \theta}{\sin ^{n+1} \theta} d \theta$
$1-\sin ^{1-n} \theta=t$
$-(1-n) \sin ^{-n} \theta \cos \theta d \theta=d t$
$\frac{\cos \theta d \theta}{\sin ^{\mathrm{n}} \theta}=\frac{\mathrm{dt}}{\mathrm{n}-1}$
$\frac{1}{n-1} \int(t)^{1 / n} d t$
$\frac{1}{(n-1)}\left(\frac{t^{\frac{1}{n}}+1}{\frac{1}{n}+1}\right)+C$

