
$20000+\underset{\text { SELECTIONS SINCE } 2007}{ }$

Motion
 Nurturing potential through education

H.O. : 394, Rajeev Gandhi Nagar, Kota
www.motion.ac.in | \boxtimes : info@motion.ac.in

[MATHEMATICS] 09-01-2019_Evening

1. Let S be the set of all triangles in the xy-plane, each having one vertex at the origin and the other two vertices lie on coordinate axes with integral coordinates. If each triangle in S has area 50 sq. units, then the number of elements in the set S is:
(A) 32
(B) 9
(C) 18
(D) 36

Sol. D

$a, b \in I$
$|a . b|=100$.
$a b= \pm 100$.
(i) $a b=100=2^{2} 5^{2}$
${ }_{-+}^{++}$tatal factors $=9$
18 cases possible for a and b.
(ii)

tatal Ans $=36$
2. If the lines $x=a y+b, z=c y+d$ and $x=a^{\prime} z+b^{\prime}, y=c^{\prime} z+d^{\prime}$ are perpendicular, then:
(A) $b b^{\prime}+c c^{\prime}+1=0(B) c c^{\prime}+a+a^{\prime}=0$
(C) $a a^{\prime}+c+c^{\prime}=0$
(D) $a b^{\prime}+b c^{\prime}+1=0$

Sol. C
$\frac{x-b}{a}=\frac{y}{1}=\frac{z-d}{c}, \frac{x-b^{\prime}}{a^{\prime}}=\frac{y-d^{\prime}}{c^{\prime}}=\frac{z}{1}$
For perpandicular lines
$a a^{\prime}+c^{\prime}+c=0$
3. $f(x)=\int \frac{5 x^{8}+7 x^{6}}{\left(x^{2}+1+2 x^{7}\right)^{2}} d x,(x \geq 0)$, and $f(0)=0$, then the value of $f(1)$ is:
(A) $-\frac{1}{4}$
(B) $\frac{1}{2}$
(C) $\frac{1}{4}$
(D) $-\frac{1}{2}$

Sol. C
$f(x)=\int \frac{5 x^{8}+7 x^{6}}{\left(x^{2}+1+2 x^{7}\right)^{2}} d x, x>0$
take x^{7} common from denominator $\frac{\frac{5}{x^{6}}+\frac{7}{x^{8}}}{\left(\frac{1}{x^{5}}+\frac{1}{x^{7}}+2\right)^{2}}=\int \frac{\frac{5}{x^{6}}+\frac{7}{x^{8}}}{\left(\frac{1}{x^{5}}+\frac{1}{x^{7}}+2\right)^{2}}$
$=\int \frac{-\mathrm{dt}}{\mathrm{t}^{2}} \quad$ Let $\left(\frac{1}{\mathrm{x}^{5}}+\frac{1}{\mathrm{x}^{7}}+2\right)=\mathrm{t} \Rightarrow\left(\frac{-5}{\mathrm{x}^{6}}-\frac{7}{\mathrm{x}^{8}}\right) \mathrm{dx}=\mathrm{dt}$
$=\frac{1}{t}+C$
$=\frac{1}{\frac{1}{x^{5}}+\frac{1}{x^{7}}+2}+C$
$f(x)=\frac{x^{7}}{x^{2}+1+2 x^{7}}+C$
$C=0$
$f(1)=\frac{1}{4}=\frac{1}{4}$
4. A data consists of n observations :
$x_{1}, x_{2}, \ldots \ldots ., x_{n}$. If $\sum_{i=1}^{n}\left(x_{i}+1\right)^{2}=9 n$ and $\sum_{i=1}^{n}\left(x_{i}-1\right)^{2}=5 n$, then the standard deviation of this data is:
(A) $\sqrt{7}$
(B) 2
(C) 5
(D) $\sqrt{5}$

Sol.
$\sum_{i=1}^{n}\left(x_{i}+1\right)^{2}=\sum x_{i}^{2}+2 \sum x_{i}+n=9 n$
$\sum x_{i}^{2}+2 \sum x_{i}=8 n$
and $\quad \sum x_{i}^{2}+2 \sum x_{i}=4 n$
$\therefore \quad \sum \mathrm{x}_{\mathrm{i}}^{2}=6 \mathrm{n}$ and $\sum \mathrm{x}_{\mathrm{i}}=\mathrm{n}$
$\therefore \quad$ s.d $=\sqrt{\frac{\sum x_{i}^{2}}{n}-\left(\frac{\sum x_{i}}{n}\right)^{2}}=\sqrt{\frac{6 n}{n}-\left(\frac{n}{n}\right)^{2}}=\sqrt{5}$
5. The number of natural numbers less than 7,000 which can be formed by using the digits $0,1,3$, 7, 9 (repitition of digits allowed) is equal to :
(A) 372
(B) 375
(C) 374
(D) 250

Sol. C
$0,1,3,7,9$
$\square+\frac{\square}{4 \times 5}+\frac{\square \square \square}{4 \times 5 \times 5}+\frac{\square \square \square}{\square \times 5 \times 5 \times 5}$
$4+20+100+250$
$=374$
6. The equation of the plane containing the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the plane containing the straight lins $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is :

Sol. A
(A) $x-2 y+z=0$
(B) $3 x+2 y-3 z=0$ (C) $5 x+2 y-4 z=0(D) x+2 y-2 z=0$

Direction ratios of plane : $\left|\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ 3 & 4 & 2 \\ 4 & 2 & 3\end{array}\right| \times(2 i+3 \hat{j}+4 \hat{k})$
$=\hat{\mathrm{i}}(8)--\hat{\mathrm{j}}(1)+\hat{\mathrm{k}}(-10)$
$=(8,-1,-2) \times(2,3,4)$
$=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 8 & -1 & -10 \\ 2 & 3 & 4\end{array}\right|=\hat{i}(26)-\hat{j}(52)+\hat{k}(26)$
$=(\hat{i}-2 \hat{j}+\hat{k})$
7. The sum of the following series $1+6+\frac{9\left(1^{2}+2^{2}+3^{2}\right)}{7}+\frac{12\left(1^{2}+2^{2}+4^{2}\right)}{9}+\frac{15\left(1^{2}+2^{2}+\ldots 5^{2}\right)}{11}+\ldots$. up to 15 terms, is:
(A) 7830
(B) 7510
(C) 7820
(D) 7520

Sol. C

$1+3.2 \frac{\left(1^{2}+2^{2}\right)}{5}+\frac{3.3\left(1^{2}+2^{2}+3^{2}\right)}{7}+\frac{3.4\left(1^{2}+2^{2}+3^{2}+4^{2}\right)}{9} \mathrm{~T}_{3} \quad \mathrm{~T}_{4}$
$T_{n}=\frac{3 \cdot n\left(1^{2}+2^{2}+\ldots .+n^{2}\right)}{(2 n+1)}=\frac{3 n(n)(n+1)(2 n+1)}{6(2 n+1)}$
$=\frac{\mathrm{n}(\mathrm{n})(\mathrm{n}+1)}{2}$
$\Rightarrow \frac{\mathrm{n}^{3}+\mathrm{n}^{2}}{2}$
$\therefore S n=\frac{1}{2}\left\{\left(\frac{n(n+1)}{2}\right)^{2}+\frac{n(n+1)(2 n+1)}{6}\right\}$
$=\frac{1}{2}\left\{(15 \times 8)^{2}+\frac{15 \times 16 \times 31}{6}\right\}$
$\frac{1}{2}\{14400+1240\}=7820$
8. The logical statement $[\sim(\sim p \vee q) \vee(p \wedge r)] \wedge(\sim q \wedge r)$ is equivalent to:
(A) $(p \wedge \sim q) \vee r$
(B) $\sim p \vee r$
(C) $(\sim \mathrm{p} \wedge \sim \mathrm{q}) \wedge \mathrm{r}$
(D) $(p \wedge r) \wedge \sim q$

Sol. D

$$
\begin{aligned}
& {[\sim(\sim p \vee q) \vee(p \wedge r)] \wedge(\sim q \wedge r)} \\
& {[(p \wedge \sim q) \vee(p \wedge r)] \wedge(\sim q \wedge r)} \\
& {[p \wedge(\sim q \vee r)] \wedge(\sim q \wedge r)} \\
& p \wedge(\sim q \wedge r) \\
& (p \wedge r) \wedge \sim q
\end{aligned}
$$

9. Let f be a differentiable function from R to R such that $|f(x)-f(y)| \leq 2|x-y|^{3 / 2}$, for all $x, y, \in R$. If $f(0)=1$ then $\int_{0}^{1} f^{2}(x) d x$ is equal to:
(A) 0
(B) 1
(C) $\frac{1}{2}$
(D) 2

Sol. B

$$
\begin{array}{ll}
& \frac{|f(x)-f(y)|}{|x-y|} \leq 2|x-y|^{1 / 2} \\
& \left|\frac{\mid f(x)-f(y)}{x-y}\right| \leq 2|x-y|^{1 / 2} \\
& \lim _{y \rightarrow x}\left|f^{\prime}(x)\right| \leq 0 \\
\therefore \quad & f^{\prime}(x)=0 \\
\therefore \quad & f(x)=\text { Constant } \\
& \text { Given } f(0)=1 \quad \therefore f(x)=1 \\
\therefore \quad & \int_{0}^{1} d x=1
\end{array}
$$

10. Let $A(4,-4)$ and $B(9,6)$ be points on the parabola, $y^{2}=4 x$. Let C be chosen on the arc $A O B$ of the parabola, where O is the origin, such that the area of $\triangle A C B$ is maximum. Then, the area (in sq.units) of $\triangle A C B$, is:
(A) $30 \frac{1}{2}$
(B) 32
(C) $31 \frac{3}{4}$
(D) $31 \frac{1}{4}$

Sol.

$$
\begin{aligned}
& \text { Area }=\frac{1}{2}\left|\begin{array}{ccc}
\mathrm{t}^{2} & 2 \mathrm{t} & 1 \\
9 & 6 & 1 \\
4 & -4 & 1
\end{array}\right| \\
& =\frac{1}{2}\left\{\mathrm{t}^{2}(10)-2 \mathrm{t}(5)-1(60)\right\} \\
& \mathrm{A}=5\left|\mathrm{t}^{2}-\mathrm{t}-6\right| \\
& \frac{\mathrm{dA}}{\mathrm{dt}}=0, \mathrm{t}=\frac{1}{2} \\
& \text { Aera }_{\max }=5\left|\frac{1}{4}-\frac{1}{2}-6\right|=5\left|\frac{1-2-24}{4}\right|=\frac{125}{4}=31 \frac{1}{4}
\end{aligned}
$$

11. Let the equations of two sides of a triangle be $3 x-2 y+6=0$ and $4 x+5 y-20$. If the orthocentre of this triangle it at $(1,1)$ then the equation of its third side is:
(A) $122 y-26 x-1675=0$
(B) $122 y+26 x+1675=0$
(C) $26 x-122 y-1675=0$
(D) $26 x+61 y+1675=0$

Sol. C

Equation of $B D: 5 x-4 y=1$
Solve with $3 x-2 y+6=0$
Equation of CE: $2 x+3 y=5$
Solve with $4 x+5 y-20=20$
Co-ordinates of $B=\left(-13, \frac{33}{2}\right)$
Co-ordinates of $C=\left(\frac{35}{2},-10\right)$
$\therefore \quad$ Equation of $B C$
$y+10=\frac{+13}{61}\left(x-\frac{35}{2}\right)$
$61 y+610=+13 x+\frac{445}{2}$
$-26 x+122 y+1675=0$
12. The area of the region $A=\{(x, y): 0 \leq y \leq x|x|+1\}$ and $-1 \leq x \leq 1$ in sq. units, is:
(A) $\frac{2}{3}$
(B) $\frac{1}{3}$
(C) 2
(D) $\frac{4}{3}$

Sol. C

$$
0 \leq y \leq x|x|+1, x \in[-1,1]
$$

Case-I $x \in[0,1]$

$$
y \leq x^{2}+1
$$

Case-II

$$
x \in[-1,0]
$$

$$
A=\int_{-1}^{0}\left(-x^{2}+1\right) d x+\int_{0}^{1}\left(x^{2}+1\right) d x
$$

$$
\begin{aligned}
& =\left(\frac{-x^{3}}{3}+x\right)_{-1}^{0}+\left(\frac{x^{3}}{3}+x\right)_{0}^{1} \\
& =-\left(\frac{1}{3}-1\right)+\left(\frac{1}{3}+1\right) \\
& \frac{2}{3}+\frac{4}{3}=2
\end{aligned}
$$

13. Let $f:[0,1] \rightarrow R$ be such that $f(x y)=f(x) . f(y)$, for all $x, y \in[0,1]$, and $f(0) \neq 0$. If $y=y(x)$ satisfies the differential equation $\frac{d y}{d x}=f(x)$ with $y(0)=1$, then $y\left(\frac{1}{4}\right)+y\left(\frac{3}{4}\right)$ is equal to:
(A) 4
(B) 3
(C) 5
(D) 2

Sol. B
$f(x . y)=f(x) . f(y), x, y \in[0,1]$
$f(0) \neq 0$
$x=y=0$
$\frac{d y}{d x}=f(x)$
$f(0)=f^{2}(0)$
$y(0)=1$
$\therefore \quad \mathrm{f}(0)=1$
$y=0$
$f(0)=f(x)=1$
$\therefore \quad \frac{\mathrm{dy}}{\mathrm{dx}}=1$
$y=x+c$
$x=0, y=1 \quad \therefore c=1$
$y=x+1$
$y\left(\frac{1}{4}\right)+y\left(\frac{3}{4}\right)=\frac{1}{4}+1+\frac{3}{4}+1=3$.
14. If both the roots of the quadratic equation $x^{2}-m x+4=0$ area real and distinct and they lie in the intervasl $[1,5]$, then m lie in the interval :
(A) $(5,6)$
(B) $(-5,-4)$
(C) $(4,5)$
(D) $(3,4)$

Sol. C / Bonus
$x^{2}-m x+4=0$
(1) $D>0$
(2) $f(1) \leq>0(3) f(5) \geq 0$
(4) $1<-\frac{b}{2 a}<5$
$m^{2}-16>0$
$m \in(-\infty,-4) \cup(4, \infty)$
Solving : $m \in(4,5)$
$5-m \geq 0 \quad 25-5 m+4 \geq 0$

$m \leq 5 \quad m \leq 29 / 5$
$1<\frac{\mathrm{m}^{2}}{2}<5$
$2<M<10$
$m \in(4,5]$
15. An urn contains 5 red and 2 green balls. A ball is drawn at random from the urn. If the drawn ball is green, then a red ball is added to the urn and if the drawn ball is red, then a green ball is added to the urn; the original ball is not returned to the urn. Now, a second ball is drawn at random from it. The probability that the second ball is red, is :
(A) $\frac{27}{49}$
(B) $\frac{32}{49}$
(C) $\frac{21}{49}$
(D) $\frac{26}{49}$

Sol. B

$5 R$
$2 G$

$P(G) \cdot P(R)+P(R) \cdot P(R)$
$\frac{2}{7} \times \frac{6}{7}+\frac{5}{7} \times \frac{4}{7}=\frac{12+20}{49}=\frac{32}{49}$.
16. If the system of linear equations $x-4 y+7 z=g, 3 y-5 z=h,-2 x+5 y-9 z=k$ is consistent, then:
(A) $g+2 h+k=0$
(B) $g+h+k=0$
(C) $2 \mathrm{~g}+\mathrm{h}+\mathrm{k}=0$
(D) $g+h+2 k=0$

Sol. C

$$
\left\{\begin{array}{ll}
x-4 y+7 z=g \\
3 y-5 z=h \\
-2 x+5 y-9 z=k
\end{array} \quad \quad D=\left|\begin{array}{ccc}
1 & -4 & 7 \\
0 & 3 & -5 \\
-2 & 5 & -9
\end{array}\right|\right.
$$

$D_{1}=\left|\begin{array}{ccc}g & -4 & 7 \\ h & 3 & -5 \\ k & 5 & -9\end{array}\right|$
$=\mathrm{g}(-27+25)+4(-9 \mathrm{~h}+5 \mathrm{k})+7(5 \mathrm{~h}-3 \mathrm{k})=0$
$=-2 g 36 h+20 k+35 h-21 k=0$
$-2 g-h-k=0$
$2 g+h+k=0$
17. If $\int_{0}^{\pi / 3} \frac{\tan \theta}{\sqrt{2 \mathrm{k} \sec \theta}} \mathrm{d} \theta=1-\frac{1}{\sqrt{2}},(k>0)$, then the value of k is:
(A) 2
(B) 4
(C) $\frac{1}{2}$
(D) 1

Sol. A
$\int_{0}^{\pi / 3} \frac{\tan \theta}{\sqrt{2 \mathrm{ksec} \theta}} \mathrm{d} \theta=1-\frac{1}{\sqrt{2}}, \mathrm{k}>0$
$\frac{1}{\sqrt{2 \mathrm{k}}} \int_{0}^{\pi / 3} \frac{\sin \theta}{\sqrt{\cos \theta}} \mathrm{~d} \theta$
Let $\cos \theta=\mathrm{t} \Rightarrow-\sin \theta \mathrm{d} \theta=\mathrm{dt}$
One Solving K = 2
18. Let $A=\{x \in R: x$ is not a positive interger $\}$.

Define a fucntion $f: A \rightarrow R$ as $f(x)=\frac{2 x}{x-1}$, then f is :
(A) neither injective nor surjective
(B) surjective but not injectivbe
(C) injective but not surjective
(D) not injective

Sol. C
$f: A \rightarrow R$
$f(x)=\frac{2 x}{x-1}$
$\frac{\text { linear }}{\text { linear }}$ is always one-one
19. Let a, b nd c be the $7^{\text {th }}, 11^{\text {th }}$ and $13^{\text {th }}$ terms respectively of a non-constant A.P. if these are also the three consecutive terms of a G.P., then $\frac{a}{c}$ is equal to :
(A) 2
(B) $\frac{7}{13}$
(C) $\frac{1}{2}$
(D) 4

Sol.

$$
\begin{aligned}
t_{7}=a & =A+6 d \\
b & =A+10 d \\
c & =A+12 d
\end{aligned}
$$

$$
\begin{aligned}
& r=\frac{b}{a}=\frac{b}{b} \\
& =\frac{A+10 d}{A+6 d}=\frac{A+12 d}{A+10 d} \\
& r \Rightarrow \frac{2 d}{4 d}=\frac{1}{2} \\
& \therefore \frac{1}{r^{2}}=4
\end{aligned}
$$

20. If $\left[\begin{array}{ccc}e^{t} & e^{-t} \cos t & e^{-t} \sin t \\ e^{t} & -e^{-t} \cos t-e^{-t} \sin t & -e^{-t} \sin t+e^{-t} \cos t \\ e^{t} & 2 e^{-t} \sin t & -2 e^{-t} \cos t\end{array}\right]$ then A is :
(A) not invertible for any $t \in R$.
(B) invertible only if $t=\frac{\pi}{2}$.
(C) invertible only if $t=\pi$.
(D) invertible for all $t \in R$.

Sol. D

$$
\begin{aligned}
& |A|=e^{-t}\left|\begin{array}{ccc}
1 & \cos t & \sin t \\
1 & -\cos t-\sin t & -\sin t+\cos t \\
1 & 2 \sin t & -2 \cos t
\end{array}\right| \\
& =e^{-t}\left|\begin{array}{ccc}
1 & \cos t & \sin t \\
0 & -2 \cos t-\sin t & -2 \sin t+\cos t \\
0 & 2 \sin t-\cos t & -2 \cos t-\sin t
\end{array}\right| \\
& =e^{-t}\left\{(2 c+s)^{2}+(2 s-c)^{2}\right\} \\
& =5 e^{-t}
\end{aligned}
$$

21. Let z_{0} be a root of the quadratic equation, $x^{2}+x+1=0$, If $z=3+6 i z_{0}^{81}-3 i z_{0}^{93}$, then arg z is equal to;
(A) 0
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{6}$
(D) $\frac{\pi}{4}$

Sol.
$z_{0} \xlongequal{7} \begin{aligned} & w \\ & w^{2}\end{aligned}$
$Z=3+6 i Z_{0}^{81}-3 i Z_{0}^{93}$
$3+6 \mathrm{iw}^{81}-3 \mathrm{i} \mathbf{w}^{93}$
$=3+3 i$
$\therefore \arg (z)=\pi / 4$
22. The coefficient of t^{4} in the expansion of $\left(\frac{1-t^{6}}{1-t}\right)$ is :
(A) 12
(B) 14
(C) 15
(D) 10

Sol. C

$\left(1-t^{6}\right)^{3}(1-t)^{-3}$
$\left({ }^{3} \mathrm{C}_{0}-{ }^{3} \mathrm{C}_{1} \mathrm{t}^{6}+{ }^{3} \mathrm{C}_{2} \mathrm{t}^{12}-{ }^{3} \mathrm{C}_{3}{ }^{18}\right)(1-\mathrm{t})^{-3}$
${ }^{3+4-1} \mathrm{C}_{4}={ }^{6} \mathrm{C}_{4}=15$
23. A hyperbola has its centre at the origin, passes through the point (4, 2) and has transverse axis of length 4 along the x-axis. Then the eccentricity of the hyperbola is:
(A) $\frac{3}{2}$
(B) $\sqrt{3}$
(C) 2
(D) $\frac{2}{\sqrt{3}}$

Sol. D

$a=2$
$\frac{x^{2}}{y}-\frac{4^{2}}{b^{2}}=1$
$4-\frac{4}{b^{2}}=1$
$\frac{3}{4}=\frac{1}{b^{2}}$
$b^{2}=4 / 3$
$\therefore \quad e^{2}=1+\frac{4 / 3}{4}=\frac{1}{3}+1$
$e=\frac{2}{\sqrt{3}}$
24. If $x=3$ tan t and $y=3$ sec t, the the value of $\frac{d^{2} y}{d x^{2}}$ att $=\frac{\pi}{4}$, is :
(A) $\frac{1}{6}$
(B) $\frac{3}{2 \sqrt{2}}$
(C) $\frac{3}{3 \sqrt{2}}$
(D) $\frac{1}{6 \sqrt{2}}$

Sol. D
$x=3$ tant, $y=3$ sect
$\frac{d x}{d t}=3 \sec ^{2} t$
$\frac{d y}{d t}=3 \sec t \tan t$
$\therefore \quad \frac{d y}{d t}=\sin t$
$\frac{d^{2} y}{d x^{2}}=\cos t \cdot \frac{d t}{d x}=\frac{\cos ^{3} t}{3}$
$t=\frac{\pi}{4}$
$\therefore \quad \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{1}{6 \sqrt{2}}$
25. The number of all possible positive intergral values of α for which the roots of the quadratic equation, $6 x^{2}-11 x+\alpha=0$ are rational numbers is :
(A) 3
(B) 2
(C) 4
(D) 5

Sol. A
D \rightarrow perfect sq.
$D=121-24 \alpha=\lambda^{2}$
$\alpha=1$,
reject
$\alpha=2$
reject
$\alpha=3$
$\alpha=3$
$\left.\begin{array}{l}\alpha=4 \\ \alpha=5\end{array}\right\}$
3 integration values
26. Let $\vec{a}=\hat{i}+\hat{j}+\sqrt{2} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+\sqrt{2} \hat{k}$ and $\vec{c}=5 \hat{i}+\hat{j}+\sqrt{2} \hat{k}$ be three vectors such that the projection vector of \vec{b} on \vec{a} is \vec{a} If $\vec{a}+\vec{b}$ is perpendicular to \vec{c}, then $|\vec{b}|$ is equal to:
(A) $\sqrt{32}$
(B) 6
(C) 4
(D) $\sqrt{22}$

Sol. A

Project of \vec{b} on $\vec{a}=\frac{\vec{b}-\vec{a}}{|\vec{a}|}=|\vec{a}|$
$\frac{\mathrm{b}_{1}+\mathrm{b}_{2}+2}{2}=2$
$b_{1}+b_{2}=2$
$(\vec{a}+\vec{b}) \perp \vec{c} \Rightarrow(\vec{a}+\vec{b}) \cdot \vec{c}=0$
$5 b_{1}+b_{2}=-10$
$\mathrm{b}_{1}=-3, \quad \mathrm{~b}_{2}=5$
$\therefore|\vec{b}|=6$
27. If $x=\sin ^{-1}(\sin 10)$ and $y=\cos ^{-1}(\cos 10)$, then $y-x$ is equal to:
(A) 10
(B) 7π
(C) 0
(D) π

Sol. D
$x=\sin ^{-1}(\sin 10)=-10+3 \pi$
$y-\cos ^{-1} \cos 10=4 \pi-10$
$\therefore \quad y-x=4 \pi-10+10-3 \pi$
$=\pi$
28. For each $x \in R$, let $[x]$ be the greatest integer less than or equal to x. Then $\lim _{x \rightarrow 0^{-}} \frac{x([x]+|x|) \sin [x]}{|x|}$ is equal to:
(A) 1
(B) $\sin 1$
(C) $-\sin 1$
(D) 0

Sol. C

$\lim _{x \rightarrow 0^{-}} \frac{x\{[x]+|x|\} \sin [x]}{|x|}$
$\lim _{x \rightarrow 0^{-}} \frac{x(+x+1) \sin 1}{-x}=-\sin 1$
29. If the circles $x^{2}+y^{2}-16 x-20 y+164=r^{2}$ and $(x-4)^{2}+(y-7)^{2}=36$ intersect at two distinct points, then;
(A) $0<r<1$
(B) $r=11$
(C) $r>11$
(D) $1<r<11$

Sol. D

$C_{1}(8,10), r_{1}=r$
$C_{2}(4,7) \quad r_{2}=6$
$\left|r_{1}-r_{2}\right|<C_{1} C_{2}<r_{1}+r$
$\therefore r \in(1,11)$
30. If $0 \leq x<\frac{\pi}{2}$, then the number of values of x for which $\sin x-\sin 2 x+\sin 3 x=0$, is :
(A) 3
(B) 2
(C) 1
(D) 4

Sol. B
$\sin x+\sin 3 x-\sin 2 x=0$
$\sin 2 x(2 \cos x-1)=0$
$\sin 2 x=0, \cos x=\frac{1}{2}$
$x=0, \frac{\pi}{3}$

