
$20000+\underset{\text { SELECTIONS SINCE } 2007}{ }$

Motion
 Nurturing potential through education

H.O. : 394, Rajeev Gandhi Nagar, Kota
www.motion.ac.in \boxtimes : info@motion.ac.in

[CHEMISTRY]

1. The major product formed in the following reaction is:

(A)

(B)

(C)

(D)

Sol. A
Aldehyde reacts at a faster rate than keton during aldol and stericall less hindered anion will be a better nucleophile so sefl aldol at $\mathrm{CH}_{3}-\mathrm{C}-\mathrm{H}$ will be the major product.
2. Which of the following compounds is not aromatic ?
(A)

(B)

(C)

(D)

Sol. C

3. A solution containing 62 g ethylene glycol in 250 g water is cooled to $-10^{\circ} \mathrm{C}$. If K_{f} for water is 1.86 $\mathrm{K} \mathrm{kg} \mathrm{mol}{ }^{-1}$, the amount of water (in g) separated as ice is :
(A) 48
(B) 64
(C) 16
(D) 32

Sol. B
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} . \mathrm{m}$
$10=1.86 \times \frac{62 / 62}{W_{\mathrm{kg}}}$
$W=0.186 \mathrm{~kg}$
$\Delta \mathrm{W}=(250-186)=64 \mathrm{gm}$
4. At $100^{\circ} \mathrm{C}$, copper (Cu) has FCC unit cell structure with cell edge length of $\times \mathrm{A}$. What is the approximate density of Cu (in $\mathrm{g} \mathrm{cm}^{-3}$) at this temperature ?
[Atomic Mass of $\mathrm{Cu}=63.55 \mathrm{u}$]
(A) $\frac{205}{x^{3}}$
(B) $\frac{211}{x^{3}}$
(C) $\frac{105}{x^{3}}$
(D) $\frac{422}{x^{3}}$

Sol. D
FCC unit cell $Z=4$
$d=\frac{63.5 \times 4}{6 \times 10^{23} \times \mathrm{x}^{3} \times 10^{-24}} \mathrm{~g} / \mathrm{cm}^{3}$
$\mathrm{d}=\frac{63.5 \times 4 \times 10}{6} \mathrm{~g} / \mathrm{cm}^{3}$
$d=\frac{423.33}{x^{3}} \simeq\left(\frac{422}{x^{3}}\right)$
5. For coagulation of arsenious sulphide sol, which one of the following salt solution will be most effective ?
(A) NaCl
(B) $\mathrm{Na}_{3} \mathrm{PO}_{4}$
(C) BaCl_{2}
(D) AlCl_{3}

Sol. D
Sulphide is -ve charged colloid so cation with maximum charge will be most effective for coagulation. $\mathrm{Al}^{3+}>\mathrm{Ba}^{2+}>\mathrm{Na}^{+}$coagulating power.
6. In which of the following processes, the bond order has increased and paramagnetic character has changed to diamagnetic ?
(A) $\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}{ }^{2-}$
(B) $\mathrm{NO} \rightarrow \mathrm{NO}^{+}$
(C) $\mathrm{N}_{2} \rightarrow \mathrm{~N}_{2}{ }^{+}$
(D) $\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{+}$

Sol. B

Process
$\mathrm{N}_{2} \rightarrow \mathrm{~N}_{2}{ }^{+}$
Change in magnetic nature
$\mathrm{NO} \rightarrow \mathrm{NO}^{+}$
Dia \rightarrow Para
Para \rightarrow Dia
$\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{-2} \quad$ Para \rightarrow Dia
$\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{+}$

Bonad order change

$3 \rightarrow 2.5$
$2.5 \rightarrow 3$
$2 \rightarrow 1$
$2 \rightarrow 2.5$
7. The entropy change associated with the conversion of 1 kg of ice at 273 K to water vapours at 383 K is :
(Specific heat of water liquid and water vapour are $4.2 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$ and $2.0 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$; heat of liquid fusion and vapourisation of water are $334 \mathrm{~kJ} \mathrm{~kg}^{-1}$ and $2491 \mathrm{~kJ} \mathrm{~kg}^{-1}$, respectively). ($\log 273=2.436$, $\log 373=2.572, \log 383=2.583$)
(A) $2.64 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
(B) $8.49 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
(C) $9.26 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
(D) $7.90 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$

Sol. C

8. The correct sequence of amino acids present in the tripeptide given below is :

(A) Thr-Ser-Val
(B) Thr-Ser-Leu
(C) Val-Ser-Thr
(D) Leu-Ser-Thr

Sol. C
Leusine

Serine

Throcnine

9. The metal that forms nitride by reacting directly with N_{2} of air is :
(A) Cs
(B) K
(C) Li
(D) Rb

Sol. C
Only Li react directly with N2 out of alkali metals $6 \mathrm{Li}+\mathrm{N}_{2} \rightarrow 2 \mathrm{Li}_{3} \mathrm{~N}$
10. The major product fo the following reaction is :

$\xrightarrow[\text { (ii) } \mathrm{KOH} \text { (dil) }]{\text { (i) } \mathrm{Br}_{2} / h \nu}$
(A)

(B)

(C)

(D)

Sol. C

(ii) KOH (dil)

11. The correct matcvh between Item I and Item II is :

Item I

Sol. B
12. The major product of the following reaction is :

(A)

(B)

(C)

(D)

Sol. C

13. Consider the following reversible chemical reactions :
$\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \stackrel{\mathrm{k}_{1}}{\rightleftharpoons} 2 \mathrm{AB}(\mathrm{g})$
$6 \mathrm{AB}(\mathrm{g})+\underset{\mathrm{k}_{2}}{\rightleftharpoons} 3 \mathrm{~A}_{2}(\mathrm{~g})+3 \mathrm{~B}_{2}(\mathrm{~g})$
The relation between K_{1} and K_{2} is :
(A) $K_{1} K_{2}=\frac{1}{3}$
(B) $\mathrm{K}_{1} \mathrm{~K}_{2}=3$
(C) $\mathrm{K}_{2}=\mathrm{K}_{1}^{-3}$
(D) $\mathrm{K}_{2}=\mathrm{K}_{1}{ }^{3}$

Sol. C

$\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \stackrel{\mathrm{k}_{1}}{\rightleftharpoons} 2 \mathrm{AB}$
\Rightarrow eq. (1) $\times 3$
$6 \mathrm{AB}(\mathrm{g}) \rightleftharpoons 3 \mathrm{~A}_{2}(\mathrm{~g})+3 \mathrm{~B}_{2}(\mathrm{~g})$
$\Rightarrow\left(\frac{1}{\mathrm{k}_{1}}\right)^{3}=\mathrm{k}_{2} \Rightarrow \mathrm{k}_{2}=\left(\mathrm{k}_{1}\right)^{-3}$
14. For the following reaction, the mass of water produced from 445 g of $\mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6}$ is :
$2 \mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6}(\mathrm{~s})+163 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 114 \mathrm{CO}_{2}(\mathrm{~g})+110 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
(A) 495 K
(B) 490 g
(C) 890 g
(D) 445 g

Sol. A
moles of $\mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6}(\mathrm{~s})=\frac{445}{890}=0.5$ moles
$\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}=\frac{110}{4}=\frac{55}{2}$
$\mathrm{m}_{\mathrm{H}_{2} \mathrm{O}}=\frac{55}{2} \times 18$
$=495 \mathrm{gm}$
15. For the reaction, $2 A+B \rightarrow$ products, when the concentrations of A and B both were doubled, the rate of the reaction increased from $0.3 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~S}^{-1}$ to $2.4 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$. When the concentration of A alone is doubled, the rate increased from $0.3 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ to $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$.
Which one of the folloiwng statemetns is correct ?
(A) Order of the reaction with respect to B is 1
(B) Order of the raction with respect to A is 2
(C) Total order of the reaction is 4
(D) Order of the reaction with respect to B is 2

Sol. D
$\mathrm{r}=\mathrm{K}[\mathrm{A}]^{\mathrm{x}}[\mathrm{B}]^{\mathrm{y}}$
$\Rightarrow 8=2^{3}=2^{x+y}$
$\Rightarrow x+y=3 \ldots(1)$
$\Rightarrow 2=2^{x}$
$\Rightarrow x=1, y=2$
Order w.r.t. $\mathrm{A}=1$
Order w.r.t. $B=2$
16. The major prodeuct obtained in the following reaction is:

(A)

(B)

(C)

(D)

Sol. D

17. Good reducing nature of $\mathrm{H}_{3} \mathrm{PO}_{2}$ is attributed to the presence of :
(A) One P-OH bond
(B) Two P - Oh bonds
(C) Two P - H bonds
(D) One P-H bond

Sol. C
$\mathrm{H}_{3} \mathrm{PO}_{2}$ is good reducing agent due to presence of two P.H bonds.

18. The temporary hardness of water is due to :
(A) CaCl_{2}
(B) $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
(C) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
(D) NaCl

Sol. B
$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ is reponsible for temporary hardness of water
19. Which of the following conditions in drinking water causes methemoglobinemia ?
(A) $>50 \mathrm{ppm}$ of chloride
(B) $>50 \mathrm{ppm}$ of nitrate
(C) $>50 \mathrm{ppm}$ of lead
(D) $>100 \mathrm{ppm}$ of sulphate

Sol. B
Concentration of nitrate >50 ppm in drinking water causes methemoglobinemia
20. The pH of rain water, is approximately :
(A) 5.6
(B) 6.5
(C) 7.5
(D) 7.0

Sol. A
pH of rain water is approximate 5.6
21. The correct statement regarding the given Elingham diagram is :

(A) At $500^{\circ} \mathrm{C}$, coke can be used for the extraction of Zn from ZnO
(B) At $1400^{\circ} \mathrm{C}, \mathrm{Al}$ can be used for the extraction of Zn from ZnO
(C) At $800^{\circ} \mathrm{C}$, Cu can be used for the extraction of Zn from ZnO
(D) Coke cannot be used for the extraction of Cu from $\mathrm{Cu}_{2} \mathrm{O}$

Sol. B
According to the given diagram Al can reduce ZnO .
$3 \mathrm{ZnO}+2 \mathrm{Al} \rightarrow 3 \mathrm{Zn}+\mathrm{Al}_{2} \mathrm{O}_{3}$
22. When the first electron gain enthalpy $\left(\Delta_{e g} H\right)$ of oxygen is $-141 \mathrm{~kJ} / \mathrm{mol}$, its second electron gain enthalpy is:
(A) a positive value
(B) almost the same as that of the first
(C) a more negative value than the first
(D) negative, but less negative than the first

Sol. A

Second electron gain enthalpy is always positive for every element.
$\mathrm{O}_{(\mathrm{g})}^{-}+\mathrm{e}^{-} \rightarrow \mathrm{O}_{(\mathrm{g})}^{-2} \quad ; \quad \Delta \mathrm{H}=$ positive
23. If the standard electrode potential for a cell is 2 V at 300 K , the equilibrium constnat (K) for the reaction
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightleftharpoons \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$ at 300 K approximately ($\mathrm{R}=8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \mathrm{~F}=96000 \mathrm{C} \mathrm{mol}^{-1}$)
(A) e^{160}
(B) e^{-80}
(C) e^{320}
(D) e^{-160}

Sol. A

$$
\begin{aligned}
& \Delta \mathrm{G}^{\circ}=-\mathrm{RT} \text { Ink }=. \mathrm{nFE}^{\circ}{ }_{\text {cell }} \\
& \text { Ink }=\frac{\mathrm{n} \times \mathrm{F} \times \mathrm{E}^{\mathrm{O}}}{\mathrm{~T} \times \mathrm{T}}=\frac{2 \times 96000 \times 2}{8 \times 300} \\
& \text { Ink }=160 \\
& \mathrm{k}=\mathrm{e}^{160}
\end{aligned}
$$

24. Homoleptic octahedral complexes of a metal ion ' $M^{3+\prime}$ ' with three monodentate ligands L_{1}, L_{2} and L_{3} absorb wavelengths in the region of green, blue and red respectively. The increasing order of the ligand strength is:
(A) $L_{2}<L_{1}<L_{3}$
(B) $\mathrm{L}_{1}<\mathrm{L}_{2}<\mathrm{L}_{3}$
(C) $\mathrm{L}_{3}<\mathrm{L}_{2}<\mathrm{L}_{1}$
(D) $\mathrm{L}_{3}<\mathrm{L}_{1}<\mathrm{L}_{2}$

Sol. D
Order of $\lambda_{\text {abs }}-L_{3}>L_{1}>L_{2}$
So Δ_{0} order will be $L_{2}>L_{1}>L_{3}\left(\right.$ as $\left.\Delta_{0} \propto \frac{1}{\lambda_{\text {abs }}}\right)$
So order of ligand strenght will be $L_{2}>L_{1}>L_{3}$
25. The test performed on compound X and their inferences are :

Test

(A) 2, 4 -DNP test
(B) Iodoform test
(C) Azo-dye test Compound ' X ' is

Inference

Coloured precipitate
Yellow precipitate
No dye formation
(B)

(C)

(D)

Sol. D
$\rightarrow 2,4$ - DNP test is given by aldehyde on ketone
\rightarrow Iodoform test is given by compound having

26. The increasing basicity order of the following compounds is :
(A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(B)

(C)

(D)

(A) A $<$ B $<$ D $<$ C
(B) D $<$ C $<$ A $<$ B
(C) D $<$ C $<$ B $<$ A
(D) A $<$ B $<$ C $<$ D

Sol. B

27. The complex that has highest crystal field splitting energy (Δ), is
(A) $\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
(B) $\mathrm{K}_{2}\left[\mathrm{CoCl}_{4}\right]$
(C) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}_{3}$
(D) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$

Sol. A
As complex $\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$ have CN^{-}ligand which is strongfield ligand amongst the given ligands in other complexes.
28. Which of the following combination of statements is true regarding the interpretation of the atomic orbitals ?
(A) An electron in an orbital of high angular momentum stays away from the nucleous than an electron in the orbital of lower angular momentum.
(B) For a given value of the principal quantum number, the size of the orbit is inversely proportional to the azimuthal quantum number.
(C) According to wave mechanics, the ground state angular momentum is equal to $\frac{h}{2 \pi}$.
(D) The plot of Ψ Vs r for various azimuthal quantum numbers, shows peak shifting towards higher
r value.
(A) A, B
(B) A, D
(C) B, C
(D) A, C

Sol. D
Refer Theory
29. The transition element that has lowest enthalpy of atomisation, is :
(A) V
(B) Zn
(C) Fe
(D) Cu

Sol. B, D
Since Zn is not a transition element so transition element having lowest atomisation energy out of $\mathrm{Cu}, \mathrm{V}, \mathrm{Fe}$ is Cu .
30. The products formed in the reaction of cumene with O_{2} followed by treatment with dil. HCl are :
(A)

(B)

(C)

(D)
 and

Sol. B
Cummene hydroperoxide reaction

