

Motion
Nurturing potential through education H.O. : 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in |区: info@motion.ac.in

हमारा विश्वास... हर एक विद्यार्थी है खुास

1. A water tank has the shape of an inverted right circular cone, whose semi- vertical angle is $\tan ^{-1}\left(\frac{1}{2}\right)$. Water is poured into it at a constant rate of 5 cubic meter per minute. The the rate (in $\mathrm{m} / \mathrm{min}$). at which the level of water is rising at the instant when the depth of water in the tank is 10 m ; is :
(1) $1 / 10 \pi$
(2) $1 / 15 \pi$
(3) $1 / 5 \pi$
(4) $2 / \pi$

Sol. 3
$\frac{\mathrm{dv}}{\mathrm{dt}}=5 \mathrm{~cm}^{3} / \mathrm{min}$
$\theta=\tan ^{-1}\left(\frac{1}{2}\right)$
$\tan \theta=\frac{1}{2}=\frac{\mathrm{r}}{\mathrm{h}} \Rightarrow 2 \mathrm{r}=\mathrm{h}$
volume $=\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3} \pi\left(\frac{\mathrm{~h}}{2}\right)^{2}(\mathrm{~h})$
$v=\frac{\pi}{12} \cdot h^{3}$
$\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{\pi}{12} \cdot 3 \mathrm{~h}^{2} \cdot \frac{\mathrm{dh}}{\mathrm{dt}}$
$\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{\pi}{4} \cdot \mathrm{~h}^{2} \cdot \frac{\mathrm{dh}}{\mathrm{dt}}$
Put $\mathrm{h}=10$

$5=\frac{\pi}{4}(10)^{2} \frac{\mathrm{dh}}{\mathrm{dt}}$
$\frac{20}{\pi(100)}=\frac{\mathrm{dh}}{\mathrm{dt}}$
$\therefore \frac{\mathrm{dh}}{\mathrm{dt}}=\frac{1}{5 \pi}$
2. If the sum and product of the first three terms in an A.P. are 33 and 1155, respectively, then a value of its $11^{\text {th }}$ terms is:
(1) -25
(2) 25
(3) -36
(4) -35

Sol. 1

$a, a+d, a+2 d$ are in A.P
$a+a+d+a+2 d=33$
$3(a+d)=33$
$a+d=11 \ldots$ (1)
(a) $(a+d)(a+2 d)=1155$
(a) $(11)(a+2 d)=1155$
(a) $(a+2 d)=105$

हमारा विश्वास... हर एक विद्यार्थी है खुपास

(a) $(a+2(11-a))=105\{\because d=11-a\}$
$a^{2}-22 a+105=0$
$(a-7)(a-15)=0$
$a=7$ or $a=15$
$\therefore d=4$ or $d=-4$
$\therefore \mathrm{T}_{11}=\mathrm{a}+10 \mathrm{~d}$ or $\mathrm{T}_{11}=\mathrm{a}+10 \mathrm{~d}$
$\mathrm{T}_{11}=7+10(4)$ or $\mathrm{T}_{11}=15+10(-4)$
$\mathrm{T}_{11}^{11}=47$ or $\mathrm{T}_{11}=-25$
3. The mean and the median of the folowing ten numbers in increasing order $10,22,26,29,34, x, 42,67,70, y$ are 42 and 35 respectively, then $\frac{y}{x}$ is equal to :
(1) $7 / 3$
(2) $9 / 4$
(3) $7 / 2$
(4) $8 / 3$

Sol. 1
Mean $=\frac{10+22+26+29+34+4+42+67+70+y}{10}$
$42=\frac{300+x+y}{10} \Rightarrow 420=300+x+y$
$x+y=120$
median $=\frac{x+34}{2}$
$35=\frac{x+34}{2} \Rightarrow x=70-34 \Rightarrow x=36$
as $x+y=120$
$\therefore y=120-36$
$y=84$
$\therefore \frac{y}{x}=\frac{84}{36}=\frac{7}{3}$
4. If $f(x)=[x]-\left[\frac{x}{4}\right], x \in R$, where $[x]$ denotes the greatest integer function, then :
(1) $\lim _{x \rightarrow 4^{-}} f(x)$ exists but $\lim _{x \rightarrow 4^{+}} f(x)$ does not exists
(2) $\lim _{x \rightarrow 4^{+}} f(x)$ exists but $\lim _{x \rightarrow 4^{-}} f(x)$ does not exists.
(3) f is continuous at $x=4$
(4) Both $\lim _{x \rightarrow 4^{-}} f(x)$ and $\lim _{x \rightarrow 4^{+}} f(x)$ exists but are not equal

Sol. 3
$f(x)=[x]-\left[\frac{x}{4}\right], x \in R$
$\lim _{x \rightarrow A^{+}}(x)=\lim _{h \rightarrow 0}[4+h]-\left[\frac{4+h}{4}\right]$
$=4-1=3$

हमारा विश्वास... हर एक विद्यार्थी है खुखास

$\lim _{x \rightarrow 4} f(x)=\lim _{h \rightarrow 0}[4-h]-\left[\frac{4-h}{4}\right]$
= $3-0=3$
$f(4)=[4]-\left[\frac{4}{4}\right]$
$=4-1=3$
$\therefore \mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=4$
5. If $\cos x \frac{d y}{d x}-y \sin x=6 x,\left(0<x<\frac{\pi}{2}\right)$ and $y\left(\frac{\pi}{3}\right)=0$, then $y\left(\frac{\pi}{6}\right)$ is equal to :
(1) $\frac{\pi^{2}}{2 \sqrt{3}}$
(2) $-\frac{\pi^{2}}{4 \sqrt{3}}$
(3) $-\frac{\pi^{2}}{2 \sqrt{3}}$
(4) $-\frac{\pi^{2}}{2}$

Sol. 3
$\cos x \frac{d y}{d x}-y \sin x=6 x\left(0<x<\frac{\pi}{2}\right)$
$\frac{d y}{d x}-y \tan x=6 x . \sec x$
Linear differential equation
\therefore I.F. $=\mathrm{e}^{\int-\tan \mathrm{d} \mathrm{d} x}$
$=\mathrm{e}^{\int-\tan \mathrm{xdx}}=\mathrm{e}^{-(-\ln \cos \mathrm{x})}=|\cos \mathrm{x}|$
But $x \in(0, \pi / 2) \quad \therefore \operatorname{Cos} x$
\therefore I.F. $=\cos x$
$\therefore \mathrm{y}(\mathrm{IF})=6 \int \mathrm{x} \sec \mathrm{x} \cdot \cos \mathrm{xdx}$
$y \cos x=6 \cdot \frac{x^{2}}{2}+C$
$y \cos x=3 x^{2}+C$
given $y\left(\frac{\pi}{3}\right)=0 \Rightarrow(0) \cdot \cos \frac{\pi}{3}=3\left(\frac{\pi^{2}}{9}\right)+C$
$C=\frac{-\pi^{2}}{3}$
Put $x=\frac{\pi}{6}$
$y \cdot \cos \frac{\pi}{6}=3\left(\frac{\pi^{2}}{6}\right)-\frac{\pi^{2}}{3}$
$y .\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi^{2}}{12}-\frac{\pi^{2}}{3}$

हमारा विश्वास... हर एक विद्यार्यी है खुखास

$\therefore y=\frac{-\pi^{2}}{2 \sqrt{3}}$
6. The area (in sq. units) of the smaller of the two circles that touch the parabola, $y^{2}=4 x$ at the point $(1,2)$ and the x-axis is :
(1) $8 \pi(2-\sqrt{2})$
(2) $4 \pi(3+\sqrt{2})$
(3) $4 \pi(2-\sqrt{2})$
(4) $8 \pi(3-2 \sqrt{2})$

Sol. 4
Centre (h,r)
$r=r$
Tangent for parabola
at $P(1,2)$ is
$\mathrm{T}=0$
i.e. $y(2)-4\left(\frac{x+1}{2}\right)=0$
$x-y-1=0$
normal at P is $x+y-3=0$
centre is on $x+y-3=0$
$\therefore h+r-3=0$
$h=3-r \therefore c \equiv(3-r, r)$

as $P C=r$
$(P C)^{2}=r^{2}$
$(3-r-1)^{2}+(r-2)^{2}=r^{2}$
$4+r^{2}-4 r+r^{2}+4-4 r=r^{2}$
$r^{2}-8 r+8=0$
$r=4+2 \sqrt{2}$ or $r=4-2 \sqrt{2}$
($4+2 \sqrt{2}$ will give x-coordinate negative which is note possible)
\therefore area $=\pi r^{2}$
$=\pi(4-2 \sqrt{2})^{2}$
area $=\pi(16+8-16 \sqrt{2})=\pi(24-16 \sqrt{2})$
$=8 \pi(3-2 \sqrt{2})$
7. If some three consecutive coefficients in the binomial expansion of $(x+1)^{n}$ in powers of x are in the ratio $2: 15: 70$, then the average of these three coefficients is :
(1) 964
(2) 227
(3) 625
(4) 232

Sol. 4
${ }^{n} C_{r}:{ }^{n} C_{r+1}:{ }^{n} C_{r+2}:: 2: 15: 70$
$\frac{{ }^{n} C_{r}}{{ }^{n} C_{r+1}}=\frac{2}{15} \Rightarrow \frac{n!}{r!(n-r)!} \frac{n!}{(r+1)!(n-r-1)!}=\frac{2}{15}$
$\frac{(r+1)!(n-r-1)!}{r!(n-r)!}=\frac{2}{15} \Rightarrow \frac{(r+1)!(n-r-1)!}{r!(n-r)(n-r-1)!}=\frac{2}{15}$

हमारा विश्वास... हर एक विद्यार्यी है खुखास

$\therefore \frac{r+1}{n-r}=\frac{2}{15}$
$\frac{{ }^{n} C_{r+1}}{{ }^{n} C_{r+2}}=\frac{15}{70} \Rightarrow \frac{r+2}{n-r-1}=\frac{15}{70}=\frac{3}{14}$
From (1)
$15(r+1)=2(n-r)$
$15 r+15=2 n-2 r$
$17 r+15=2 n$
$17 r=2 n-15$
From (2)
$14(r+2)=3(n-r-1)$
$14 r+28=3 n-3 r-3$
$17 r+31=3 n$
$17 r=3 n-31$
$\therefore 2 n-15=3 n-31$
$\mathrm{n}=16 \& r=1$
\therefore Average $=\frac{{ }^{16} \mathrm{C}_{1}+{ }^{16} \mathrm{C}_{2}+{ }^{16} \mathrm{C}_{3}}{3}=\frac{16+120+560}{3}$
$=\frac{696}{3}=232$
8. The value of integral $\int_{0}^{1} x \cot ^{-1}\left(1-x^{2}+x^{4}\right) d x$ is :
(1) $\frac{\pi}{2}-\frac{1}{2} \log _{e} 2$
(2) $\frac{\pi}{4}-\frac{1}{2} \log _{e} 2$
(3) $\frac{\pi}{4}-\log _{e} 2$
(4) $\frac{\pi}{2}-\log _{e} 2$

Sol. 2
$I=\int_{0}^{1} x \cot ^{-1}\left(1-x^{2}+x^{4}\right) d x$
$I=\int_{0}^{1} x \tan ^{-1}\left(\frac{1}{1-x^{2}+x^{4}}\right) d x$
Put $x^{2}=t \quad$ as $x \rightarrow 0, t \rightarrow 0$
$2 x d x=d t \quad x \rightarrow 1, t \rightarrow 1$
$I=\frac{1}{2} \int_{0}^{1} \tan ^{-1}\left(\frac{1}{1-t+t^{2}}\right) d t$
$I=\frac{1}{2} \int_{0}^{1} \tan ^{-1}\left(\frac{1}{1-t(1-t)}\right) d t$
$\mathrm{I}=\frac{1}{2} \int_{0}^{1} \tan ^{-1}\left(\frac{(1-\mathrm{t})+\mathrm{t}}{1-\mathrm{t}(1-\mathrm{t})}\right) \mathrm{dt}$
$\mathrm{I}=\frac{1}{2} \int_{0}^{1}\left[\tan ^{-1}(1-\mathrm{t})+\tan ^{-1}(\mathrm{t})\right] \mathrm{dt}$

ह्मारा विश्वास... हर एक विद्यार्थी है खुणास

$\mathrm{I}=\frac{1}{2} \int_{0}^{1} \tan ^{-1}(1-\mathrm{t}) \mathrm{dt}+\frac{1}{2} \int_{0}^{1} \tan ^{-1}(\mathrm{t}) \mathrm{dt}$
$\mathrm{I}=\frac{1}{2} \int_{0}^{1} \tan ^{-1}(1-\mathrm{t}) \mathrm{dt}+\frac{1}{2} \int_{0}^{1} \tan ^{-1}(1-\mathrm{t}) \mathrm{dt}$
$I=\int_{0}^{1} \tan ^{-1}(1-t) d t$
put 1-t $=y$
$-\mathrm{dt}=\mathrm{dy}$
$\mathrm{t} \rightarrow 0 ; \mathrm{y} \rightarrow 1$
as $t \rightarrow 1 ; y \rightarrow 0$
$I=-\int_{1}^{0} \tan ^{-1} y d y$
$I=\int_{0}^{1} \tan ^{-1} y d y$
using by parts
$I=\left[y \cdot \tan ^{-1} y-1 / 2 \ln \left(1+y^{2}\right)\right]$
$I=1 \cdot \tan ^{-1}(1)-1 / 2 \ln (2)=0$
$I=\frac{\pi}{4}-\frac{1}{2} \ln 2$
9. The area (in sq. units) of the region $A=\left\{(x, y): \frac{y^{2}}{2} \leq x \leq y+4\right\}$ is:
(1) $\frac{53}{3}$
(2) 16
(3) 18
(4) 30

Sol. 3
$\frac{y^{2}}{2} \leq x \leq y+4$
$y^{2} \leq 2 x \& x \leq y+4$
$y^{2}-2 x \leq 0 \ldots(1) \&$
$x-y-4 \leq 0 \ldots$ (2)
Solve 1 \& 2
$y^{2}=2 x \& x=y+4$
$\therefore y^{2}=2(y+4)$
$y^{2}-2 y-8=0$
$y(y+2)-4(y+2)=0$
$(y+2)(y-4)=0$
$Y=-2 \& y=4$
$\therefore \mathrm{x}=2 \& \mathrm{x}=8$

A $(2,-2) \& B(8,4)$
\therefore Required area is

हमारा विश्वास... हर एक विद्यार्थी है खुखास

area $=\int_{-2}^{4}($ line - parabola $) d y$
$\int_{-2}^{4}\left[(y+4)-\frac{y^{2}}{2}\right] d y$
$=\left(\frac{y^{2}}{2}+4 y-\frac{1}{6} \cdot y^{3}\right)_{-2}^{4}$
area $\left[\frac{(4)^{2}}{2}+4(4)-\frac{1}{6}(4)^{3}\right]-\left[\frac{(-2)^{2}}{2}+4(-2) \frac{1}{6}(-2)^{3}\right]$
area $=54 / 3$
area $=18$ sq. unit
10. the common tangent to the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}+6 x+8 y-24=0$ also passes through the point :
(1) $(-4,6)$
(2) $(-6,4)$
(3) $(6,-2)$
(4) $(4,-2)$

Sol. 3
$x^{2}+y^{2}=4 \rightarrow C_{1}=(0,0) r_{1}=2$
$x^{2}+y^{2}+6 x+8 y-24=0 \rightarrow C_{2}=(-3,-4), r_{2}=7$
distance $C_{1} C_{2}=5 \& r_{1}+r_{2}=9$
$\left|r_{1}-r_{2}\right|=5$
as $C_{1} C_{2}=\left|r_{1}-r_{2}\right|$
\therefore Circle touches internally
\therefore equation of comman tangent will be same as common chord
$\therefore \mathrm{S}_{1}-\mathrm{S}_{2}=0$
$\left(x^{2}+y^{2}+6 x+8 y-24\right)-\left(x^{2}+y^{2}-4\right)=0$
$6 x+8 y-20=0$
$\mathbf{3 x}+\mathbf{4 y} \mathbf{- 1 0} \mathbf{1 0} \mathbf{0}$ common tangent

point $(6,-2)$ satisfy this
11. The vertices B and C of a $\triangle A B C$ lie on the line, $\frac{x+2}{3}=\frac{y-1}{0}=\frac{z}{4}$ such that $B C=5$ units. Then the area (in sq. units) of this triangle, given that the point $A(1,-1,2)$, is :
(1) 6
(2) $\sqrt{34}$
(3) $2 \sqrt{34}$
(4) $5 \sqrt{17}$

Sol. 2

area of $\triangle \mathrm{ABC}=\frac{1}{2}(\mathrm{AD})(\mathrm{BC})$
let D is any point on line $\frac{x+2}{3}=\frac{y-1}{0}=\frac{z}{4}$
$D=(3 \lambda-2,1,4 \lambda)$
Direction ratio of AD are $3 \lambda-3,2,4 \lambda-2$

हमारा विश्वास... हर एक विद्यार्यी है खुखास

as AD perpendicular to line
$\therefore(3 \lambda-3)(3)+0(2)+4(4 \lambda-2)=0$
$25 \lambda=17$
$\lambda=17 / 25$
Point $D \equiv\left(\frac{51}{25}-2,1, \frac{68}{25}\right)$
$D \equiv\left(\frac{1}{25}, 1, \frac{68}{25}\right)$
$A D=\sqrt{\left(1-\frac{1}{25}\right)^{2}+(-1-1)^{2}+\left(\frac{68}{25}-2\right)^{2}}$
$A D=\sqrt{\left(\frac{24}{25}\right)^{2}+(4)^{2}+\left(\frac{18}{25}\right)^{2}}$
$A D=\frac{\sqrt{(24)^{2}+(50)^{2}+(18)^{2}}}{25}$
$A D=\frac{\sqrt{546+2500+324}}{25}$
$=\frac{\sqrt{3400}}{25}$
so area of $\triangle \mathrm{ABC}=\frac{1}{2}(5) \cdot \frac{\sqrt{3400}}{25}$
$=\sqrt{34}$
12. Two poles standing on a horizontal ground are of heights 5 m and 10 m respectively. The line joining their tops makes an angle of 15° with the ground. Then the distance (in m) between the poles, is :
(1) $5(\sqrt{3}+1)$
(2) $5(2+\sqrt{3})$
(3) $\frac{5}{2}(2+\sqrt{3})$
(4) $10(\sqrt{3}-1)$

Sol. 2

In $\triangle \mathrm{BDE}$
$\tan 15^{\circ}=\frac{5}{x}$
$x=5 . \cot 15^{\circ}$
$x=\frac{5 \cdot(\sqrt{3}+1)}{(\sqrt{3}-1)}$
$x=5(2+\sqrt{3})$
13. The sum of the series $1+2 \times 3+3 \times 5+4 \times 7+\ldots$ upto $11^{\text {th }}$ tems is :
(1) 915
(2) 945
(3) 916
(4) 946

Sol. 4

$\mathrm{S}=1+(2 \times 3)+(3 \times 5)+(4 \times 7)+\ldots$ upto 11
$T_{r}=r(2 r-1)$
$\therefore \mathrm{S}_{\mathrm{n}}=\sum \mathrm{T}_{\mathrm{r}}$
$S_{n}=\sum r(2 r-1)$
$S_{n}=2 \sum r^{2}-\sum r$
$S_{n}=2\left(\frac{n(n+1)(2 n+1)}{6}\right)-\frac{n(n+1)}{2}$
$S_{n}=\frac{n(n+1)(2 n+1)}{3}-\frac{n(n+1)}{2}$
$=n(n+1)\left[\frac{2 n+1}{3}-\frac{1}{2}\right]$
$=n(n+1)\left[\frac{4 n+2-3}{6}\right]$
$S_{n}=\frac{n(n+1)(4 n-1)}{6}$
put $n=11$ for sum of 11 terms

हमारा विश्वास... हर एक विद्यार्यी है खुखास

$S_{11}=\frac{11(12)(43)}{6}$
$S_{11}=946$
14. If the function $f(x)=\left\{\begin{array}{ll}a|\pi-x|+1, & x \leq 5 \\ b|x-\pi|+3, & x>5\end{array}\right.$ is continuous at $x=5$, then the value of $a-b$ is :
(1) $-\frac{2}{\pi+5}$
(2) $\frac{2}{\pi-5}$
(3) $\frac{2}{5-\pi}$
(4) $\frac{2}{\pi+5}$

Sol. 2
We have to check at $x=5$
$f(5)=a|\pi-5|+1=a(5-\pi)+1$
$f\left(5^{+}\right)=b|5-\pi|+3$
$=\mathrm{b}(5-\pi)+3$
$f\left(5^{-}\right)=a|5-\pi|+1$
as $f(x)$ is continous at $x=5$
$\therefore \mathrm{a}(5-\pi)+1=\mathrm{b}(5-\pi)+3$
(a-b)(5- $)=2$
$(a-b)=\frac{2}{5-\pi}$
15. If the tangent to the parabola $y^{2}=x$ at a point $(\alpha, \beta),(\beta>0)$ is also a tangent to the ellipse, x^{2} $+2 y^{2}=1$, then, α is equal to :
(1) $2 \sqrt{2}-1$
(2) $\sqrt{2}+1$
(3) $\sqrt{2}-1$
(4) $2 \sqrt{2}+1$

Sol. 2
$y^{2}=x$
tangent at $P(\alpha, \beta)$ is $T=0$
$\beta y-\left(\frac{x+\alpha}{2}\right)=0$
$2 \beta y-x-\alpha=0$
$2 \beta y=x+\alpha$
$y=\frac{1}{2 \beta} x+\frac{\alpha}{2 \beta}$
ellipse is
$x^{2}+2 y^{2}=1$
$\frac{x^{2}}{1}+\frac{y^{2}}{\frac{1}{2}}=1$
if a line
$y=m x+c$ is a tangent
then $C^{2}=a^{2} m^{2}+b^{2}$
$\left(\frac{\alpha}{2 \beta}\right)^{2}=(1)\left(\frac{1}{2 \beta}\right)^{2}+\frac{1}{2}$

हमारा विश्वास... हर एक विद्यार्यी है खुखास

$\frac{\alpha^{2}}{4 \beta^{2}}=\frac{1}{4 \beta^{2}}+\frac{1}{2}$
also point $P(\alpha, \beta)$ is on $y^{2}=x$
$\therefore \beta^{2}=\alpha$
$\therefore \frac{\alpha^{2}}{4 \alpha}=\frac{1}{4 \alpha}+\frac{1}{2}$
$\alpha^{2}=1+2 \alpha$
$\alpha^{2}-2 \alpha-1=0$
$\alpha=\frac{2 \pm \sqrt{4+4}}{2}$
$\alpha=1 \pm \sqrt{2}$
$\alpha=1+\sqrt{2} \& a=1-\sqrt{2}$
16. If the system of equations $2 x+3 y-z=0, x+k y-2 z=0$ and $2 x-y+z=0$ has a non-trivial solution (x, y, z), then $\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+k$ is equal to :
(1) $\frac{1}{2}$
(2) $-\frac{1}{4}$
(3) -4
(4) $\frac{3}{4}$

Sol. 1

$2 x+3 y-z=0$
$x+k y-2 z=0$
$2 x-y+z=0$
for non - trivial solutions, $\Delta=0$
$\left|\begin{array}{ccc}2 & 3 & -1 \\ 1 & k & -2 \\ 2 & -1 & 1\end{array}\right|=0$
$2(k-2)-3(1+4)-1(-1-2 k)=0$
$2 \mathrm{k}-4-15+1+2 \mathrm{k}=0$
$4 \mathrm{k}=18$
$\mathbf{k}=\mathbf{9 / 2}$
Now, $\quad 2 x-y+z=0$
$2 x+z=y$
$\frac{2 x}{y}+\frac{z}{y}=1$
2. $\frac{x}{y}+\frac{z}{y}-1=0$
also $2 x-z=-3 y$
$\frac{2 x}{y}-\frac{z}{y}+3=0$
add (1) and (2)
4. $\frac{x}{y}+2=0$

हमारा विश्वास... हर एक विद्यार्यी है ख़ास

$\frac{x}{y}=\frac{-1}{2}$
$2 x+3 y=z$
$\frac{2 x}{z}+\frac{3 y}{z}=1$
2. $\frac{x}{z}+3 \cdot \frac{y}{z}-1=0$.
also $2 x-y+z=0$
$2 x-y=-z$
$\frac{2 x}{z}-\frac{y}{z}+1=0$
from (3) - (4)
$\frac{y}{z}=\frac{1}{2}$
$2 x+3 y-z=0$
$3 x-z=-2 x$
$\frac{3 y}{x}-\frac{z}{x}+2=0$
put $\frac{y}{x}=-2$ in (5) $\frac{z}{x}=-4$
$\therefore \frac{\mathrm{x}}{\mathrm{y}}+\frac{\mathrm{y}}{\mathrm{z}}+\frac{\mathrm{z}}{\mathrm{x}}+\mathrm{k}=\frac{1}{2}$
17. If $\int e^{\sec x}\left(\sec x \tan x f(x)+\left(\sec x \tan x+\sec ^{2} x\right)\right) d x=e^{\sec x} f(x)+C$, then a possible choice of $f(x)$ is :
(1) $\sec x-\tan x-\frac{1}{2}$
(2) $\sec x+\tan x+\frac{1}{2}$
(3) $x \sec x+\tan x+\frac{1}{2}$
(4) $\sec x+x \tan x-\frac{1}{2}$

Sol. 2

$\int \mathrm{e}^{\sec x}\left(\sec x \tan x f(x)+\left(\sec x \tan x+\sec ^{2} x\right)\right) d x=e^{\sec x f}(x)+C$
Differentiating both sides
$e^{\sec x}(\sec x . \tan x . f(x))+e^{\sec x} \cdot\left(\sec x \tan x+\sec ^{2} x\right)=e^{\sec x} \sec x \cdot \tan x \cdot f(x)+e^{\sec x} \cdot f^{\prime}(x)$
$e^{\sec x}\left(\sec x . \tan x+\sec ^{2} x\right)=e^{\sec x} . f^{\prime}(x)$
$f^{\prime}(x)=\left(\sec x \tan x+\sec ^{2} x\right)$
integrating both sides
$\int f^{\prime}(x) d x=\int\left(\sec x \tan x+\sec ^{2} x\right) d x$
$f(x)=\sec x+\tan x+C$
18. If m is chosen in the quadratic equation $\left(m^{2}+1\right) x^{2}-3 x+\left(m^{2}+1\right)^{2}=0$ such that the sum of its roots is greatest, then the absolute difference of the cubes of its roots is :
(1) $8 \sqrt{5}$
(2) $4 \sqrt{3}$
(3) $10 \sqrt{5}$
(4) $8 \sqrt{3}$

Sol. 1

$\left(m^{2}+1\right) x^{2}-3 x+\left(m^{2}+1\right)^{2}=0$

हमारा विश्वास... हर एक विद्यार्यी है खुखास

$\alpha+\beta=\frac{3}{m^{2}+1} \& \alpha \beta=\frac{\left(m^{2}+1\right)^{2}}{\left(m^{2}+1\right)}=\left(m^{2}+1\right)$
sum of roots is greatest of $\left(m^{2}+1\right)$ is minimum when $m=0$
\therefore equation is $\mathrm{x}^{2}-3 \mathrm{x}+1=0$
$\therefore \alpha+\beta=3$
$\& \alpha \beta=1$
$\left|\alpha^{3}-\beta^{3}\right|=\left|(\alpha-\beta)\left(\alpha^{2}+\beta^{2}+\alpha \beta\right)\right|$
$=\left|\sqrt{(\alpha+\beta)^{2}-4 \alpha \beta}\left((\alpha+\beta)^{2}-2 \alpha \beta+\alpha \beta\right)\right|$
$=\left|\left(\sqrt{(3)^{2}-4(1)}\right)\left((3)^{2}-1\right)\right|$
$=|\sqrt{5}(8)|$
$=8 \sqrt{5}$
19. If a unit vector \vec{a} makes angles $\pi / 3$ with $\hat{i}, \pi / 4$ with \hat{j} and $\theta \in(0, \pi)$ with \hat{k}, then a value of θ is
(1) $\frac{2 \pi}{3}$
(2) $\frac{\pi}{4}$
(3) $\frac{5 \pi}{6}$
(4) $\frac{5 \pi}{12}$

Sol. 1
$\alpha=\frac{\pi}{3}, \beta=\frac{\pi}{4} \quad \& \gamma=$?
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
$\cos ^{2} \frac{\pi}{3}+\cos ^{2} \frac{\pi}{4}+\cos ^{2} \gamma=1$
$\frac{1}{4}+\frac{1}{2}+\cos ^{2} \gamma=1$
$\cos ^{2} \gamma=1-\frac{3}{4}=\frac{1}{4}$
$\therefore \gamma=\frac{\pi}{3}$ or $\frac{2 \pi}{3}$
20. A rectangle is inscribed in a circle with a diameter lyaing along the line $3 y=x+7$. If the two adjacent vertices of the rectangle are $(-8,5)$ and $(6,5)$, then the area of the rectangle (in sq. units) is :
(1) 98
(2) 84
(3) 72
(4) 56

Sol. 2

हमारा विश्वास... हर एक विद्यार्थी है खुास

$A B$ is paralle to $x-a x i s$
\therefore OP is parallel to y - axis
$\therefore \mathrm{x}$ - coordinate an OP will be constant
i.e. $x=-1$
put $x=-1$ in line $3 y=x+7$
$3 y=-1+7$
$y=2$
$\therefore \mathrm{O} \equiv(-1,2)$
$O P=3$
\therefore area of rectangle $A B C D=(A B)(B C)$
$=(14)(2(O P)$
$=(14)(2 \times 3)$
$14 \times 6=84$
21. The value of $\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ}$ is :
(1) $\frac{1}{16}$
(2) $\frac{1}{32}$
(3) $\frac{1}{18}$
(4) $\frac{1}{36}$

Sol. 1
$\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ}$
$\sin 30^{\circ}\left(\sin 50^{\circ} \sin 10^{\circ} \sin 70^{\circ}\right)$
$\frac{1}{2}\left[\sin \left(60^{\circ}-10^{\circ}\right) \sin 10^{\circ} \sin \left(60^{\circ}+10^{\circ}\right)\right]$
$=\frac{1}{2}\left[\frac{1}{4} \sin 3(10)\right]=\frac{1}{8} \sin 30^{\circ}=\frac{1}{16}$
22. The total number of matrices $A=\left(\begin{array}{ccc}0 & 2 y & 1 \\ 2 x & y & -1 \\ 2 x & -y & 1\end{array}\right),(x, y \in R, x \neq y)$ for which $A^{\top} A=3 I_{3}$ is :
(1) 6
(2) 4
(3) 3
(4) 2

Sol. 2

$$
A=\left[\begin{array}{ccc}
0 & 2 y & 1 \\
2 x & y & -1 \\
2 x & -y & 1
\end{array}\right]
$$

हमारा विश्वास... हर एक विद्यार्यी है खुखास

$A^{\top} . A=3 I_{3}$
$\left[\begin{array}{ccc}0 & 2 x & 2 x \\ 2 y & y & -y \\ 1 & -1 & 1\end{array}\right]\left[\begin{array}{ccc}0 & 2 y & 1 \\ 2 x & y & -1 \\ 2 x & -y & 1\end{array}\right]=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right]$
$\left[\begin{array}{ccc}8 x^{2} & 0 & 0 \\ 0 & 6 y^{2} & 0 \\ 0 & 0 & 3\end{array}\right]=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right]$
$\therefore 6 y^{2}=3 \& 8 x^{2}=3$
$y^{2}=\frac{1}{2}$
$x^{2}=\frac{3}{8}$
$\therefore y \pm \frac{1}{\sqrt{2}} \quad x= \pm \sqrt{\frac{3}{8}}$
$\therefore 4$ marices are possible
23. If $f: R \rightarrow R$ is a differentiable function and $f(2)=6$, then $\lim _{x \rightarrow 2} \int_{6}^{f(x)} \frac{2 t d t}{(x-2)}$ is :
(1) 0
(2) $24 f^{\prime}(2)$
(3) $2 \mathrm{f}^{\prime}(2)$
(4) $12 \mathrm{f}^{\prime}(2)$

Sol. 4

$\lim _{x \rightarrow 2} \frac{\int_{6}^{f(x)} 2 t d t}{x-2}$
as $f(2)=6$ therefore it is $\frac{0}{0}$ form, using newton Leibnitz rule
$\lim _{x \rightarrow 2} \frac{2 . f(x) \cdot f^{\prime}(x)-0}{1}$
$=2 f(2) \cdot f^{\prime}(2)$
$=2$.(6). $\mathrm{f}^{\prime}(2) \Rightarrow 12 \mathrm{f}^{\prime}(2)$
24. If $p \Rightarrow(q \vee r)$ is false, then the truth values of p, q, r are respectively :
(1) $\mathrm{T}, \mathrm{T}, \mathrm{F}$
(2) $\mathrm{F}, \mathrm{T}, \mathrm{T}$
(3) F, F, F
(4) T,F,F

Sol. 4

ह्मारा विश्वास... हर एक विद्यार्थी है खुणास

p	q	r	$\mathrm{q} \vee \mathrm{r}$	$\mathrm{p} \Rightarrow(\mathrm{q} \vee \mathrm{r})$
T	T	T	T	T
T	T	F	T	T
T	F	T	T	T
T	F	F	F	F
F	T	T	T	T
F	T	F	T	T
F	F	T	T	T
F	F	F	F	T

as, $p \Rightarrow(q \vee r)$ is false
\therefore Truth values of p, q, r are T, F, F
25. Two newpapers A and B are published in a city. It is known that 25% of the city population reads A and 20% reads B while 8% reads both A and B. Further, 30\% of those who read A but not B look into advertisements and 40% of those who read B but not A also look into advertisements, while 50% of those who read both A and B look into advertisements. Then the percentage of the population who look into advertisements is :
(1) 13.9
(2) 13
(3) 12.8
(4) 13.5

Sol. 1

Let $x=17, y=8, z=12$
Total percentage of persons who look
into advertisement
$=(30 \%$ of $x)+(40 \%$ of $z)+(50 \%$ of $y)$
$=\left(\frac{3}{10} \times 17\right)+\left(\frac{4}{10} \times 12\right)+\left(\frac{5}{10} \times 8\right)$
$=\frac{51}{10}+\frac{48}{10}+\frac{40}{10}$
$=\frac{139}{10}=13.9$
26. The domain of the defination of the function $f(x)=\frac{1}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$ is :
(1) $(-2,-1) \cup(-1,0) \cup(2, \infty)$
(2) $(-1,0) \cup(1,2) \cup(3, \infty)$
(3) $(-1,0) \cup(1,2) \cup(2, \infty)$
(4) $(1,2) \cup(2, \infty)$

Sol. 3

Fee ₹ 1500

हमारा विश्वास... हर एक विद्यार्थी है खुपास

$f(x)=\frac{1}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$
$4-x^{2} \neq 0$
$x^{2} \neq \pm 2$
$x^{3}-x>0$
$x\left(x^{2}-1\right)>0$
$x(x-1)(x+1)>0$
$x \in(-1,0) \cup(1, \infty)$

From (1) \& (2)
$x \in(-1,0) \cup(1,2) \cup(2, \infty)$
27. Some identical balls are arranged in rows to form an equilateral triangle. The first row consists of one ball, the second row consists of two balls and so on. If 99 more identical balls are added to the total numbers of balls used in forming the equilateral triangle, then all these balls can be arranged in a square whose each side contains exactly 2 balls less than the number of balls each side of the triangle contains. Then number of balls used to form the equailateral triangle is :
(1) 157
(2) 225
(3) 262
(4) 190

Sol. 4
Total ball used to form equilateral trianlge are
$=\frac{n(n+1)}{2}$
Total ball used to form
square $=(n-2)^{2}$
but given
$\frac{\mathrm{n}(\mathrm{n}+1)}{2}+99=(\mathrm{n}-2)^{2}$

$n(n+1)+198=2\left(n^{2}+4-4 n\right)$
$\Rightarrow(\mathrm{n}+10)(\mathrm{n}-19)=0$
$\mathrm{n}=19$
\therefore Total balls used to form equilateral trianlge
$=\frac{n(n+1)}{2}=\frac{19 \times 20}{2}$
$=190$

28. Let $z \in C$ be such that $|z|<1$. If $\omega=\frac{5+3 z}{5(1-z)}$, then :
(1) $5 \operatorname{Re}(\omega)>1$
(2) $5 \operatorname{Re}(\omega)>4$
(3) $5 \operatorname{Im}(\omega)<1$
(4) $4 \operatorname{Im}(\omega)>5$

Sol. 1

$|z|<1$
$5 \omega(1-z)=5+3 z$
$5 \omega-5 \omega z=5+3 z$

$|z|=5\left|\frac{\omega-1}{3+5 \omega}\right|<1$
$5|\omega-1|<|3+5 \omega|$
$5|\omega-1|<5\left|\omega+\frac{3}{5}\right|$
$|\omega-1|<\left|\omega-\left(-\frac{3}{5}\right)\right|$
$5 \operatorname{Re}(\omega)>1$
29. If the two lines $x+(a-1) y=1$ and $2 x+a^{2} y=1(a \in R-\{0,1\})$ are perpendicular, then the distance of their point of intersection from the origin is :
(1) $\frac{\sqrt{2}}{5}$
(2) $\frac{2}{5}$
(3) $\sqrt{\frac{2}{5}}$
(4) $\frac{2}{\sqrt{5}}$

Sol. 3

$L_{1} \rightarrow x+(a-1) y-1=0 \Rightarrow m_{1}=-\frac{1}{a-1}$
$L_{2} \rightarrow 2 x+a^{2} y-1=0 \Rightarrow m_{2}=-\frac{2}{a^{2}}$
as $\mathrm{L}_{1} \perp \mathrm{~L}_{2}$
$\therefore \mathrm{m}_{1} \mathrm{~m}_{2}=-1$
$\left(\frac{-1}{a-1}\right)\left(\frac{-2}{a^{2}}\right)=-1$
$\frac{2}{a^{2}(a-1)}=-1$
$a^{2}(a-1)+2=0$
$a^{3}-a^{2}+2=0$
($a+1$) is a factor
$\therefore(a+1)\left(a^{2}-2 a+2\right)=0$

हमारा विश्वास... हर एक विद्यार्यी है खुखास

$\mathrm{a}=-1$
$\therefore \mathrm{L}_{1} \rightarrow \mathrm{x}-2 \mathrm{y}-1=00$
$\mathrm{L}_{2} \rightarrow 2 \mathrm{x}+\mathrm{y}-1=0$
solve $L_{1} \& L_{2}$
$\mathrm{P} \equiv\left(\frac{3}{5},-\frac{1}{5}\right)$
distance of point P
from origin is
$\mathrm{OP}=\sqrt{\left(\frac{3}{5}\right)^{2}+\left(\frac{-1}{5}\right)^{2}}$
$\mathrm{OP}=\sqrt{\frac{10}{25}}$
$\mathrm{OP}=\sqrt{\frac{2}{5}}$
30. Let P be the plane, which contains the line of intersection of the planes, $x+y+z-6=0$ and $2 x$ $+3 y+z+5=0$ and it is perpendicular to the $x y$ - plane. Then the distance of the point $(0,0,256)$ from P is equal to :
(1) $205 \sqrt{5}$
(2) $11 / \sqrt{5}$
(3) $63 \sqrt{5}$
(4) $17 / \sqrt{5}$

Sol. 4
$P_{1} \rightarrow x+y+z-6=0$
$P_{2} \rightarrow 2 x+3 y+z+5=0$
required plane is $p_{1}+\lambda p_{2}=0$
$(x+y+z-6)+\lambda(2 x+3 y+z+5)=0$
$(1+2 \lambda) x+(1+3 \lambda) y+(1+\lambda) z+(5 \lambda-6)=0$
This plane is \perp to $x y$ - plane
$\therefore \overrightarrow{\mathrm{n}}$ || to xy plane
$\vec{n} \hat{k}=0$
$1+\lambda=0 \Rightarrow \lambda=-1$
$\therefore-x-2 y-11=0$ required plane
distance of this plane from $(0,0,256)$ is
$p=\left|\frac{0+0+11}{\sqrt{5}}\right|=\frac{11}{\sqrt{5}}$

मोशन ने बनाया साधारण को असाधारण JEE Main Result Jan'19 4 RESIDENTIAL COACHING PROGRAM (DRONA) STUDENTS ABOVE 99.9 PERCENTILE

Total Students Above 99.9 percentile - 17
Total Students Above 99 percentile - 282
Total Students Above 95 percentile - 983
\% of Students Above 95 percentile

Scholarship on the Basis of 12th Class Result

Marks PCM or PCB	Hindi State Board	State Eng OR CBSE
$\mathbf{7 0 \% - 7 4 \%}$	$\mathbf{3 0 \%}$	$\mathbf{2 0 \%}$
$75 \%-79 \%$	$\mathbf{3 5 \%}$	$\mathbf{2 5 \%}$
$\mathbf{8 0 \% - 8 4 \%}$	$\mathbf{4 0 \%}$	$\mathbf{3 5 \%}$
$85 \%-87 \%$	$\mathbf{5 0 \%}$	$\mathbf{4 0 \%}$
$\mathbf{8 8 \% - 9 0 \%}$	$\mathbf{6 0 \%}$	$\mathbf{5 5 \%}$
$\mathbf{9 1 \% - 9 2 \%}$	$\mathbf{7 0 \%}$	$\mathbf{6 5 \%}$
$93 \%-94 \%$	$\mathbf{8 0 \%}$	$\mathbf{7 5 \%}$
$\mathbf{9 5 \%}$ \& Above	$\mathbf{9 0 \%}$	$\mathbf{8 5 \%}$

New Batches for Class $11^{\text {th }}$ to $12^{\text {th }}$ pass
17 April 2019 \& 01 May 2019
हिन्दी माध्यम 市 लिए पृयक बैच

Scholarship on the Basis of JEE Main Percentile	English Medium	Hindi Medium	
Score	JEE Mains Percentile	Scholarship	Scholarship

