

Motion
Nurturing potential through education
H.O. : 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in $\|$: info@motion.ac.in

हमारा विश्वास... हर एक विद्यार्थी है खुास

1. The major product of the following reaction is:

$$
\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH} \xrightarrow[\text { (ii) DI }]{\text { (i) DCI (1 equiv.) })}
$$

(1) $\mathrm{CH}_{3} \mathrm{C}(\mathrm{I})(\mathrm{Cl}) \mathrm{CHD}_{2}$
(2) $\mathrm{CH}_{3} \mathrm{CD}(\mathrm{I}) \mathrm{CHD}(\mathrm{Cl})$
(3) $\mathrm{CH}_{3} \mathrm{CD}(\mathrm{Cl}) \mathrm{CHD}(\mathrm{I})$
(4) $\mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{CH}(\mathrm{Cl})(\mathrm{I})$

Sol. (1)

2. The organic compound that gives following qualitative analysis is:
(a)

Test
Dil, HCl
NaOH solution
$\mathrm{Br}_{2} /$ water

Inference
Insoluble
Soluble
Decolourization
(c)
(2)

(3)

(4)

Sol. (3)
PhOH is insoluble in dil. HCl , soluble in $\mathrm{NaOH} \&$ gives $\mathrm{Br}_{2} /$ water test.
3. Match the catalysts (Column I) with products (Column II).

Column I

Catalyst
(A) $\mathrm{V}_{2} \mathrm{O}_{5}$
(B) $\mathrm{TiCl}_{4} / \mathrm{Al}(\mathrm{Me})_{3}$
(C) PdCl_{2}
(D) Iron Oxide

Column II

Product
(i) Polythylene
(ii) ethanal
(iii) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(iv) NH_{3}
(1) (A)-(ii); (B)-(iii); (C)-(i); (D)-(iv)
(2) (A)-(iii); (B)-(i); (C)-(ii); (D)-(iv)
(3) (A)-(iii); (B)-(iv); (C)-(i); (D)-(ii)
(4) (A)-(iv); (B)-(iii); (C)-(ii); (D)-(i)

Sol. (2)

4. The major product of the following reaction is:

(1)

(2)

(3)

(4)

Sol. (2)

हमारा विश्वास... हर एक विद्यार्थी है ख़ास

5. Among the following, the set of parameters that represents path functions, is:
(A) $q+w$
(B) q
(C) w
(D) $\mathrm{H}-\mathrm{TS}$
(1) (A) and (D)
(2) (B),
(C) and (D)
(3) (B) and (C)
(4) (A), (B) and (C)

Sol. (3)
$\mathrm{q} \& \mathrm{w}$ are path function, rest are state function
6. For any given series of spectral lines of atomic hydrogen, let $\Delta \bar{u}=\bar{v}_{\text {max }}-\bar{v}_{\text {min }}$ be the difference in maximum and minimum frequencies is cm^{-1}. The ratio $\Delta \bar{U}_{\text {Lyman }} / \Delta \bar{U}_{\text {Balmer }}$ is:
(1) $9: 4$
(2) $5: 4$
(3) $27: 5$
(4) $4: 1$

Sol. (1)

$$
\begin{aligned}
& \frac{\Delta \bar{U}_{\text {Lyman }}}{\Delta v_{\text {Bamer }}}=\frac{\left[\frac{1}{12}-\frac{1}{\infty^{2}}\right]-\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}\right]}{\left[\frac{1}{2^{2}}-\frac{1}{\infty^{2}}\right]-\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right]} \\
& =\frac{1-\frac{3}{4}}{\frac{1}{4}-\frac{5}{36}} \\
& =\frac{4-3}{\frac{4}{9}} \\
& =\frac{9}{4}
\end{aligned}
$$

7. The element having greatest difference between its first and second ionization energies, is:
(1) Sc
(2) Ca
(3) K
(4) Ba

Sol. (3)
8. The degenerate orbitals of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ are:
(1) $d_{x z}$ and $d_{y z}$
(2) $d_{y z}$ and $d_{z^{2}}$
(3) $d_{x^{2}-y^{2}}$ and $d_{x y}$
(4) $d_{z^{2}}$ and $d_{x z}$

Sol. (1)

9. The major product of the following reaction is:

(1) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{OH}$
(3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$
(4) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$

Sol. (1)

हमारा विश्वास... हर एक विद्यार्थी है खुास

10. The correct order of the oxidation states of nitrogen in $\mathrm{NO}, \mathrm{N}_{2} \mathrm{O}, \mathrm{NO}_{2}$ and $\mathrm{N}_{2} \mathrm{O}_{3}$ is:
(1) $\mathrm{NO}_{2}<\mathrm{NO}<\mathrm{N}_{2} \mathrm{O}_{3}<\mathrm{N}_{2} \mathrm{O}$
(2) $\mathrm{N}_{2} \mathrm{O}<\mathrm{N}_{2} \mathrm{O}_{3}<\mathrm{NO}<\mathrm{NO}_{2}$
(3) $\mathrm{NO}_{2}<\mathrm{N}_{2} \mathrm{O}_{3}<\mathrm{NO}<\mathrm{N}_{2} \mathrm{O}$
(4) $\mathrm{N}_{2} \mathrm{O}<\mathrm{NO}<\mathrm{N}_{2} \mathrm{O}_{3}<\mathrm{NO}_{2}$

Sol. (4)
$\stackrel{+1}{\mathrm{~N}_{2} \mathrm{O}}<\stackrel{+2}{\mathrm{NO}}<\stackrel{+3}{\mathrm{~N}_{2}} \mathrm{O}_{3}<\stackrel{+4}{\mathrm{NO}_{2}}$
11. The major product of the followng reaction is:

(1)

(2)

(3)

(4)

Sol. (1)

12. The standard Gibbs energy for the given cell reaction in $\mathrm{kJ} \mathrm{mol}^{-1}$ at 298 K is:
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}), \mathrm{E}^{\circ}=2 \mathrm{~V}$ at 298 K
(Faraday's constant, $\mathrm{F}=96000 \mathrm{C} \mathrm{mol}^{-1}$)
(1) 192
(2) -384
(3) -192
(4) 384

Sol. (2)

$$
\begin{aligned}
\Delta \mathrm{G} & =-\mathrm{nFE} \\
& =-2 \times 96000 \times 2 \\
& =-384 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

13. Magnesium powder burns in air to give:
(1) $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Mg}_{3} \mathrm{~N}_{2}$
(2) MgO and $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
(3) MgO and $\mathrm{Mg}_{3} \mathrm{~N}_{2}$
(4) MgO only

Sol. (3)

$$
\begin{aligned}
& \mathrm{Mg}++\underset{\substack{\mathrm{O}_{2}}}{\& \mathrm{~N}_{2}} \mathrm{MgO}+\mathrm{Mg}_{3} \mathrm{~N}_{2} \\
& \text { alc }
\end{aligned}
$$

14. Consider the van der Waals constants, a and b, for the following gases,
Gas
Ar
Ne
$\mathbf{K r}$
$\mathbf{X e}$
a/(atm dm $\left.{ }^{6} \mathrm{~mol}^{-2}\right) \quad 1.3$
0.2
5.1
4.1
$\mathrm{b} /\left(10^{-2} \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right)$
3.2
1.7
1.0
5.0

Which gas is expected to have the highest critical temperature?
(1) Xe
(2) Ar
(3) Ne
(4) Kr

हमारा विश्वास... हु पब विद्यार्यी है खुास

Sol. (4)
$T_{C}=\frac{8 a}{27 R b}$
a / b for kr is maximum ie 5.1
15. The one that will show optical activity is:
(en = ethane-1, 2-diamine)
(1)

(2)

(3)

(4)

Sol. (4)

16. The increasing order of reactivity of the following compounds towards aromatic electrophilic substitution reaction is:

(1) A $<$ B $<$ C $<$ D
(2) D $<$ A $<$ C $<$ B
(3) B $<$ C $<$ A $<$ D
(4) D $<$ B $<$ A $<$ C

Sol. (2)
B $>\mathrm{C}>\mathrm{A}>\mathrm{D}$
Rate of electrophilic substitution reaction α Electron donating tendency of substituted group.
17. Liquid ' M ' and liquid ' N ' form an ideal solution. The vapour pressures of pure liquids ' M ' and ' N ' are 450 and 700 mmHg , respectively, at the same temperature. Then correct statement is:
($x_{M}=$ Mole fraction of ' M ' in solution; $x_{N}=$ Mole fraction of ' N ' in solution; $y_{M}=$ Mole fraction of ' M ' in vapour phase; $y_{N}=$ Mole fraction of ' N ' in vapour phase)
(1) $\frac{x_{M}}{x_{N}}>\frac{y_{M}}{y_{N}}$
(2) $\left(x_{M}-y_{M}\right)<\left(x_{N}-y_{N}\right)$
(3) $\frac{x_{M}}{x_{N}}<\frac{y_{M}}{y_{N}}$
(4) $\frac{x_{M}}{x_{N}}=\frac{y_{M}}{y_{N}}$

हमारा विश्वास... हा एक विद्यार्यी है खुास

Sol. (1)
$P_{M}=P_{M}{ }^{0} \quad X_{M}=P_{T} Y_{M}$
$P_{N}=P_{N}{ }^{0} X_{N}=P_{T} Y_{N}$
(1)

Dividing $\frac{(1)}{(2)}$
$\frac{450}{700} \times \frac{X_{M}}{X_{N}} \times \frac{Y_{M}}{Y_{N}}$
$\frac{X_{M}}{X_{N}}=\frac{700}{450} \frac{Y_{M}}{Y_{N}}$
$\therefore \frac{\mathrm{x}_{\mathrm{M}}}{\mathrm{x}_{\mathrm{N}}}>\frac{\mathrm{y}_{\mathrm{M}}}{\mathrm{y}_{\mathrm{N}}}$
18. Which of the followng statements is not true about sucrose?

The glycosidic linkage is present
(1) Between C_{1} of α-glucose and C_{1} of β-fructose
(2) It is a non reducing sugar
(3) On hydrolysis, it produces glucose
(4) It is also named as invert sugar

Sol. (1)
In Sucrose glycosidic bond is present between C_{1} of α-glucose and C_{2} of fructose.
19. The aerosol is a kind of colloid in which:
(1) Solid is dispersed in gas
(2) gas is dispersed in liquid
(3) gas is dispersed in solid
(4) liquid is dispersed in water

Sol. (1)

Solid dispersed in gas.
20. C_{20}, an allotrope of carbon contains:
(1) 12 hexagons and 20 pentagons
(2) 20 hexagons and 12 pentagons
(3) 16 hexagons and 16 pentagons
(4) 18 hexagons and 14 pentagons

Sol. (2)
C_{20} an allotorpe of carbon continas 12 pentagons \& 20 hexagons
21. The correct IUPAC name of the following compound is:

(1) 5-chloro-4-methyl-1-nitrobenzene
(2) 3-chloro-4-methyl-1-nitrobenzene
(4) 2-chloro-1-methyl-4-benzene

हमारा विश्वास... हर एक विद्यार्यी है ख़ास

Sol. (4)

2-chloro-1-methyl-4-nitrobenzene
22. For a reaction,
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$; identify dihydrogen $\left(\mathrm{H}_{2}\right)$ as a limiting reagent in the following reaction mixtures.
(1) 35 g of $\mathrm{N}_{2}+8 \mathrm{~g}$ of H_{2}
(2) 14 g of $\mathrm{N}_{2}+4 \mathrm{~g}$ of H_{2}
(3) 56 g of $\mathrm{N}_{2}+10 \mathrm{~g}$ of H_{2}
(4) 28 g of $\mathrm{N}_{2}+6 \mathrm{~g}$ of H_{2}

Sol. (3) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$

$$
\begin{array}{lll}
\frac{n}{\text { st. coeff. }} & \frac{W}{28 \times 1} & \frac{W}{2 \times 3} \\
& \frac{56}{28}=2 & \frac{10}{6}=1.67 \text { (smallest) } \\
& \therefore H_{2} \text { is LR }
\end{array}
$$

23. The given plots represent the variation of the concentration of a reactant R with time for two different reactions (i) and (ii). The respective orders of the ractions are:

(i)

(ii)
(1) 1,0
(2) 1,1
(3) 0, 2
(4) 0,1

Sol. (1)
For zero order

$$
\begin{aligned}
& R_{o}-R_{t}=k t \\
& R_{t}=-K t+R_{o} \\
& \therefore \text { for } 1 \text { st order } \\
& \ell n \frac{R_{0}}{R_{t}}=K t \\
& \ell n R_{o}-\ell n R_{t}=K t \\
& \ell n R_{t}=-K t+\ell n R_{o}
\end{aligned}
$$

(i)

(ii)
24. The number of water molecules(s) not coordinated to copper ion directly in $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, is:
(1) 3
(2) 1
(3) 2
(4) 4

हमारा विश्वास... हर एक विद्यार्थी है खुास

Sol. (2)

25. The osmotic pressure of a dilute solution of an ionic compound $X Y$ in water is four times that of a solution of $0.01 \mathrm{M} \mathrm{BaCl}_{2}$ in water. Assuming complete dissociation of the given ionic compounds in water, the concentration of XY (in $\mathrm{mol} \mathrm{L}^{-1}$) in solution is:
(1) 4×10^{-4}
(2) 16×10^{-4}
(3) 4×10^{-2}
(4) 6×10^{-2}

Sol. (4)
$\frac{\pi_{1}=\mathrm{i}_{1} \mathrm{C}_{1} \mathrm{RT}}{\pi_{2}=\mathrm{i}_{2} \mathrm{C}_{2} \mathrm{RT}} \quad \begin{aligned} & (\mathrm{XY}) \\ & \left(\mathrm{BaCl}_{2}\right)\end{aligned}$
$\frac{4 \mathrm{x}}{\mathrm{x}}=\frac{2 \times \mathrm{G}}{3 \times 0.01}$
$\frac{12 \times 0.01}{2}=C_{1}$
$\Rightarrow C_{1}==0.06$
26. Excessive release of CO_{2} into the atmosphere results in:
(1) global warming
(2) polar vortex
(3) depletion of ozone
(4) formation of smog

Sol. (1)
Factual
27. The major product of the following reaction is:

(1)

(2)

(3)

(4)

Fee ₹ 1500

हमारा विश्वास... हर एक विद्यार्यी है खुास

Sol. (4)

28. The ore that contains the metal in the form of fluoride is:
(1) magnetite
(2) sphalerite
(3) cryolite
(4) malachite

Sol. (3)

29. Among the following, the molecule expected to be stablized by anion formation is: $\mathrm{C}_{2}, \mathrm{O}_{2}, \mathrm{NO}, \mathrm{F}_{2}$
(1) C_{2}
(2) O_{2}
(3) F_{2}
(4) NO_{2}

Sol. (1)

30. Aniline dissolved in dilute HCl is reacted with sodium nitrite at $0^{\circ} \mathrm{C}$. This solution was added dropwise to a solution containing equimolar mixture of aniline and phenol in dil. HCl . The structure of the major product is:
(1)

(2)

(3)

(4)

Sol. (3)

मोशन ने बनाया साधारण को असाधारण JEE Main Result Jan'19
 4 RESIDENTIAL COACHING PROGRAM (DRONA) STUDENTS ABOVE 99.9 PERCENTILE

Total Students Above 99.9 percentile - 17
Total Students Above 99 percentile - 282
Total Students Above 95 percentile - 983
\% of Students Above 95 percentile $\frac{983}{3538}=$ $=$ 2 27 .78\%

Scholarship on the Basis of 12th Class Result

Marks PCM or PCB	Hindi State Board	State Eng OR CBSE
$\mathbf{7 0 \% - 7 4 \%}$	$\mathbf{3 0 \%}$	$\mathbf{2 0 \%}$
$\mathbf{7 5 \% - 7 9 \%}$	$\mathbf{3 5 \%}$	$\mathbf{2 5 \%}$
$\mathbf{8 0 \% - 8 4 \%}$	$\mathbf{4 0 \%}$	$\mathbf{3 5 \%}$
$85 \%-87 \%$	$\mathbf{5 0 \%}$	$\mathbf{4 0 \%}$
$88 \%-90 \%$	$\mathbf{6 0 \%}$	$\mathbf{5 5 \%}$
$\mathbf{9 1 \% - 9 2 \%}$	$\mathbf{7 0 \%}$	$\mathbf{6 5 \%}$
$\mathbf{9 3 \% - 9 4 \%}$	$\mathbf{8 0 \%}$	$\mathbf{7 5 \%}$
$\mathbf{9 5 \%}$ \& Above	$\mathbf{9 0 \%}$	$\mathbf{8 5 \%}$

New Batches for Class $11^{\text {th }}$ to $12^{\text {th }}$ pass
17 April 2019 \& 01 May 2019
हिन्दी माध्यम 市 लिए पृथात बैच

Scholarship on the Basis of JEE Main Percentile		English Medium	Hindi Medium
Score	JEE Mains Percentile	Scholarship	Scholarship
225 Above	Above 99	Drona Free	mited Seats)
190 to 224	Above 97.5 To 99	100\%	100\%
180 to 190	Aboev 97 To 97.5	90\%	90\%
170 to 179	Above 96.5 To 97	80\%	80\%
160 to 169	Above 96 To 96.5	60\%	60\%
140 to 159	Above 95.5 To 96	55\%	55\%
74 to 139	Above 95 To 95.5	50\%	50\%
66 to 73	Above 93 To 95	40\%	40\%
50 to 65	Above 90 To 93	30\%	35\%
35 to 49	Above 85 To 90	25\%	30\%
20 to 34	Above 80 To 85	20\%	25\%
15 to 19	75 To 80	10\%	15\%

