

JEE I NEET I Foundation

SECTION - A

1. If the functions are defined as $f(x)=\sqrt{x}$ and $g(x)=\sqrt{1-x}$, then what is the common domain of the following functions : $f+g, f-g, f / g, g / f, g-f$ where $(f \pm g)(x)=f(x) \pm g(x),(f / g)(x)=\frac{f(x)}{g(x)}$
(1) $0<x \leq 1$
(2) $0 \leq x<1$
(3) $0 \leq x \leq 1$
(4) $0<x<1$

Ans. (4)
Sol. $\quad f+g=\sqrt{x}+\sqrt{1-x}$

$$
\Rightarrow x \geq 0 \& 1-x \geq 0 \Rightarrow x \in[0,1]
$$

$f-g=\sqrt{x}-\sqrt{1-x}$

$$
\Rightarrow x \geq 0 \& 1-x \geq 0 \Rightarrow x \in[0,1]
$$

$\mathrm{f} / \mathrm{g}=\frac{\sqrt{\mathrm{x}}}{\sqrt{1-x}}$

$$
\Rightarrow x \geq 0 \& 1-x>0 \Rightarrow x \in[0,1)
$$

$g / f=\frac{\sqrt{1-x}}{\sqrt{x}}$
$\Rightarrow 1-x \geq 0 \& x>0 \Rightarrow x \in(0,1]$
$g-f=\sqrt{1-x}-\sqrt{x}$
$\Rightarrow 1-x \geq 0 \& x \geq 0 \Rightarrow x \in[0,1]$
$\Rightarrow x \in(0,1)$
2. Let α, β, γ be the roots of the equations, $x^{3}+a x^{2}+b x+c=0,(a, b, c \in R$ and a, b and $a, b \neq 0)$. If the system of the equations (in u, v, w) given by $\alpha u+\beta v+\gamma w=0 ; \beta u+\gamma v+\alpha w=0 ; \gamma u+\alpha v+\beta w=0$ has non-trivial solutions, then the value of $\frac{a^{2}}{b}$ is
(1) 5
(2) 1
(3) 0
(4) 3

Ans. (4)

Sol. $\quad x^{3}+a x^{2}+b x+c=0$

For non-trivial solutions,

$$
\begin{aligned}
& \left|\begin{array}{ccc}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta
\end{array}\right|=0 \\
& \alpha^{3}+\beta^{3}+\gamma^{3}-3 \alpha \beta \gamma=0 \\
& (\alpha+\beta+\gamma)\left[(\alpha+\beta+\alpha)^{2}-3\left(\sum \alpha \beta\right)\right]=0 \\
& (-a)\left[a^{2}-3 b\right]=0 \\
& a^{2}=3 b \quad(\because a \neq 0) \\
& \Rightarrow \quad \frac{a^{2}}{b}=3
\end{aligned}
$$

3. If the equation $a|z|^{2}+\overline{\bar{\alpha} z+\alpha \bar{z}}+d=0$ represents a circle where a, d are real constants, then which of the following condition is correct?
(1) $|\alpha|^{2}-\mathrm{ad} \neq 0$
(2) $|\alpha|^{2}-a d>0$ and $a \in R-\{0\}$
(3) $\alpha=0, a, d \in R^{+}$
(4) $|\alpha|^{2}-a d \geq 0$ and $a \in R$

Ans. (2)
Sol. $\quad a|z|^{2}+\alpha \bar{z}+\bar{\alpha} z+d=0$

$$
z \bar{z}+\left(\frac{\alpha}{a}\right) \bar{z}+\left(\frac{\bar{\alpha}}{a}\right) z+\frac{d}{a}=0
$$

Centre $=-\frac{\alpha}{a}$
$r=\sqrt{\left|\frac{\alpha}{a}\right|^{2}-\frac{d}{a}}$
$\Rightarrow\left|\frac{\alpha}{a}\right|^{2} \geq \frac{d}{a}$
$\Rightarrow|\alpha|^{2} \geq \mathrm{ad}$
4. $\frac{1}{3^{2}-1}+\frac{1}{5^{2}-1}+\frac{1}{7^{2}-1}+\ldots .+\frac{1}{(201)^{2}-1}$ is equal to:
(1) $\frac{101}{404}$
(2) $\frac{101}{408}$
(3) $\frac{99}{400}$
(4) $\frac{25}{101}$

Ans. (4)
Sol. $\quad S=\sum_{r=1}^{100} \frac{1}{(2 r+1)^{2}-1}=\sum_{r=1}^{100} \frac{1}{(2 r+2) \cdot 2(r)}$
$\therefore \quad \mathrm{S}=\frac{1}{4} \sum_{\mathrm{r}=1}^{100}\left[\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{r}+1}\right]$
$\mathrm{S}=\frac{1}{4}\left(\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots+\left(\frac{1}{100}-\frac{1}{101}\right)\right)$
$\therefore \quad S=\frac{1}{4}\left[\frac{100}{101}\right]=\frac{25}{101}$
5. The number of integral values of m so that the abscissa of point of intersection of lines $3 x+4 y=9$ and $y=m x$ +1 is also an integer, is:
(1) 3
(2) 2
(3) 1
(4) 0

Ans. (2)
Sol. $\quad 3 x+4(m x+1)=9$
$x(3+4 m)=5$
$x=\frac{5}{(3+4 m)}$
$(3+4 \mathrm{~m})= \pm 1, \pm 5$
$4 m=-3 \pm 1,-3 \pm 5$
$4 m=-4,-2,-8,2$
$m=-1,-\frac{1}{2},-2, \frac{1}{2}$
Two integral value of m
6. The solutions of the equation $\left|\begin{array}{ccc}1+\sin ^{2} x & \sin ^{2} x & \sin ^{2} x \\ \cos ^{2} x & 1+\cos ^{2} x & \cos ^{2} x \\ 4 \sin 2 x & 4 \sin 2 x & 1+4 \sin 2 x\end{array}\right|=0,(0<x<\pi)$, are:
(1) $\frac{\pi}{6}, \frac{5 \pi}{6}$
(2) $\frac{7 \pi}{12}, \frac{11 \pi}{12}$
(3) $\frac{5 \pi}{12}, \frac{7 \pi}{12}$
(4) $\frac{\pi}{12}, \frac{\pi}{6}$

Ans. (2)
Sol. $\quad R_{1} \rightarrow R_{1}+R_{2}$
$\left|\begin{array}{ccc}2 & 2 & 1 \\ \cos ^{2} x & 1+\cos ^{2} x & \cos ^{2} x \\ 4 \sin 2 x & 4 \sin 2 x & 1+4 \sin 2 x\end{array}\right|=0$
$\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{2}$
$\left|\begin{array}{ccc}0 & 2 & 1 \\ -1 & 1+\cos ^{2} x & \cos ^{2} x \\ 0 & 4 \sin 2 x & 1+4 \sin 2 x\end{array}\right|=0$
$\therefore 2+8 \sin 2 x-4 \sin 2 x=0$
$\Rightarrow \sin 2 x=-\frac{1}{2} \quad \Rightarrow x=\frac{7 \pi}{12}, \frac{11 \pi}{12}$
7. If $f(x)=\left\{\begin{array}{cl}\frac{1}{|x|} & ;|x| \geq 1 \\ a x^{2}+b & ;|x|<1\end{array}\right.$ is differentiable at every point of the domain, then the values of a and b are respectively:
(1) $\frac{5}{2},-\frac{3}{2}$
(2) $-\frac{1}{2}, \frac{3}{2}$
(3) $\frac{1}{2}, \frac{1}{2}$
(4) $\frac{1}{2},-\frac{3}{2}$

Ans. (2)
Sol. $f(x)$ is continuous at $x=1 \Rightarrow 1=a+b$
$f(x)$ is differentiable at $x=1 \Rightarrow-1=2 a$

$$
\Rightarrow \mathrm{a}=-\frac{1}{2} \therefore \mathrm{~b}=\frac{3}{2}
$$

8. A vector \vec{a} has components $3 p$ and 1 with respect to a rectangular Cartesian system. This system is rotated through a certain angle about the origin in the counter clockwise sense. If with respect to new system, \vec{a} has components $p+1$ and $\sqrt{10}$, then a value of p is equal to:
(1) 1
(2) -1
(3) $\frac{4}{5}$
(4) $-\frac{5}{4}$

Ans. (2)
Sol. $\quad|\vec{a}|_{\text {old }}=|\vec{a}|_{\text {new }}$
$(3 p)^{2}+1=(P+1)^{2}+10$
$9 p^{2}-p^{2}-2 p-10=0$
$8 p^{2}-2 p-10=0$
$4 p^{2}-p-5=0$
$4 p^{2}-5 p+4 p-5=0$
$(4 p-5)(p+1)=0$
$p=\frac{5}{4},-1$
9. The sum of all the 4-digit distinct numbers that can be formed with the digits $1,2,2$ and 3 is:
(1) 26664
(2) 122664
(3) 122234
(4) 22264

Ans. (1)

Sol. | 1 | 2 | 2 | 3 | |
| :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 | 2 |
| | 1 | 3 | 2 | 2 |
| 3 | 1 | 2 | 2 | |
| 3 | 2 | 1 | 2 | |
| 3 | 2 | 2 | 1 | |
| 2 | 1 | 3 | 2 | |
| 2 | 3 | 1 | 2 | |
| 2 | 2 | 1 | 3 | |
| 2 | 2 | 3 | 1 | |
| 2 | 3 | 2 | 1 | |
| 2 | 1 | 2 | 3 | |
| 26664 | | | | |

10. Choose the correct statement about two circles whose equations are given below:
$x^{2}+y^{2}-10 x-10 y+41=0$
$x^{2}+y^{2}-22 x-10 y+137=0$
(1) circles have no meeting point
(2) circles have two meeting points
(3) circles have only one meeting point
(4) circles have same centre

Ans. (3)
Sol. Let $S_{1}: x^{2}+y^{2}-10 x-10 y+41=0$
$\Rightarrow(x-5)^{2}+(y-5)^{2}=9$
Centre $\left(C_{1}\right)=(5,5)$
Radius $r_{1}=3$
$S_{2}: x^{2}+y^{2}-22 x-10 y+137=0$
$\Rightarrow(x-11)^{2}+(y-5)^{2}=9$
Centre $\left(C_{2}\right)=(11,5)$
radius $r_{2}=3$
distance $\left(C_{1} C_{2}\right)=\sqrt{(5-11)^{2}+(5-5)^{2}}$
distance $\left(C_{1} C_{2}\right)=6$
$\because r_{1}+r_{2}=3+3=6$
\therefore circles touch externally
Hence, circle have only one meeting point.
11. If α, β are natural numbers such that $100^{\alpha}-199 \beta=(100)(100)+(99)(101)+(98)(102)+\ldots .+(1)(199)$, then the slope of the line passing through (α, β) and origin is:
(1) 510
(2) 550
(3) 540
(4) 530

Ans. (2)
Sol. $R H S=\sum_{r=0}^{99}(100-r)(100+r)$
$=(100)^{3}-\frac{99 \times 100 \times 199}{6}=(100)^{3}-(1650) 199$
LHS $=(100)^{\alpha}-(199) \beta$
So, $\alpha=3, \beta=1650$
Slope $=\tan \theta=\frac{\beta}{\alpha}$
$\tan \theta=550$
12. The value of $3+\frac{1}{4+\frac{1}{3+\frac{1}{4+\frac{1}{3+\ldots \infty}}}}$ is equal to:
(1) $3+2 \sqrt{3}$
(2) $4+\sqrt{3}$
(3) $2+\sqrt{3}$
(4) $1.5+\sqrt{3}$

Ans. (4)
Sol. Let $\mathrm{y}=3+\frac{1}{4+\frac{1}{\mathrm{y}}}$
$y=3+\frac{y}{4 y+1}$
$\Rightarrow 4 y^{2}+y=12 y+3+y$
$\Rightarrow 4 y^{2}-12 y-3=0$
$\Rightarrow y=\frac{12 \pm \sqrt{144+48}}{8}$
$\Rightarrow \mathrm{y}=\frac{12 \pm 8 \sqrt{3}}{8}$
$\Rightarrow y=\frac{3 \pm 2 \sqrt{3}}{2}$
$\Rightarrow \mathrm{y}=1.5 \pm \sqrt{3}$
$y=1.5+\sqrt{3}$.
13. The integral $\int \frac{(2 x-1) \cos \sqrt{(2 x-1)^{2}+5}}{\sqrt{4 x^{2}-4 x+6}} d x$ is equal to:
(where c is a constant of integration)
(1) $\frac{1}{2} \sin \sqrt{(2 x+1)^{2}+5}+c$
(2) $\frac{1}{2} \sin \sqrt{(2 x-1)^{2}+5}+c$
(3) $\frac{1}{2} \cos \sqrt{(2 x+1)^{2}+5}+c$
(4) $\frac{1}{2} \cos \sqrt{(2 x-1)^{2}+5}+c$

Ans. (2)
Sol. $\int \frac{(2 x-1) \cos \sqrt{(2 x-1)^{2}+5}}{\sqrt{(2 x-1)^{2}+5}} d x$
Put $(2 x-1)^{2}+5=t^{2}$
$2(2 x-1) d x=2 t d t$
$\Rightarrow \int \frac{\cos t}{t} \times \frac{t}{2} d x=\frac{1}{2} \sin t+C$
$=\frac{1}{2} \sin \sqrt{(2 x-1)^{2}+5}+C$
14. The differential equations satisfied by the system of parabolas $y^{2}=4 a(x+a)$ is:
(1) $y\left(\frac{d y}{d x}\right)+2 x\left(\frac{d y}{d x}\right)-y=0$
(2) $y\left(\frac{d y}{d x}\right)^{2}+2 x\left(\frac{d y}{d x}\right)-y=0$
(3) $y\left(\frac{d y}{d x}\right)^{2}-2 x\left(\frac{d y}{d x}\right)-y=0$
(4) $y\left(\frac{d y}{d x}\right)^{2}-2 x\left(\frac{d y}{d x}\right)+y=0$

Ans. (2)
Sol. $y^{2}=4 a(x+a)$
$2 y y^{\prime}=4 a$
$\therefore y^{\prime}=2 a$
$\therefore b y(1) y^{2}=2 y y^{\prime}\left(x+\frac{y y^{\prime}}{2}\right)$
$y^{2}=2 y y^{\prime} x+\left(y y^{\prime}\right) 2$
$\Rightarrow y\left(y^{\prime}\right)^{2}+2 x y^{\prime}-y=0$
(as $y \neq 0$)
15. The real valued function $f(x)=\frac{\operatorname{cosec}^{-1} x}{\sqrt{x-[x]}}$, where $[x]$ denotes the greatest integer less than or equal to x, is defined for all x belonging to:
(1) all non- integers except the interval $[-1,1]$
(2) all integers except $0,-1,1$
(3) all reals except integers
(4) all reals except the interval $[-1,1]$

Ans. (1)

Sol. $\quad f(x)=\frac{\operatorname{cosec}^{-1} x}{\sqrt{x-[x]}}$
$x \in(-\infty,-1] \cup[1, \infty)$
$\&\{x\} \neq 0$
$x \neq$ Integer
$\Rightarrow x \in(-\infty,-1) \cup(1, \infty)-$ all integers
16. If $\lim _{x \rightarrow 0} \frac{\sin ^{-1} x-\tan ^{-1} x}{3 x^{3}}$ is equal to L, then the value of $(6 L+1)$ is:
(1) $\frac{1}{2}$
(2) 2
(3) $\frac{1}{6}$
(4) 6

Ans. (2)
Sol. $L=\lim _{x \rightarrow 0} \frac{\left(x+\frac{x^{3}}{6}+\ldots .\right)-\left(x-\frac{x^{3}}{3} \cdots\right)}{3 x^{3}}$
$\mathrm{L}=\frac{1}{3}\left(\frac{1}{6}+\frac{1}{3}\right)=\frac{1}{6}$
$\Rightarrow 6 \mathrm{~L}+1=6 \cdot \frac{1}{6}+1=2$
17. For all four circles M, N, O and P, following four equations are given:

Circle M : $x^{2}+y^{2}=1$
Circle $N: x^{2}+y^{2}-2 x=0$
Circle $0: x^{2}+y^{2}-2 x-2 y+1=0$
Circle P: $x^{2}+y^{2}-2 y=0$
If the centre of circle M is joined with centre of the circle N, further centre of circle N is joined with centre of the circle O, centre of circle O is joined with the centre of circle P and lastly, centre of circle P is joined with centre of circle M, then these lines form the sides of a:
(1) Rectangle
(2) Square
(3) Parallelogram
(4) Rhombus

Ans. (2)

Sol. $\quad C_{M}=(0,0)$
$C_{N}=(1,0)$
$C_{0}=(1,1)$
$C_{p}=(0,1)$

18. Let $\left(1+x+2 x^{2}\right)^{20}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots . .+a_{40} x^{40}$. Then, $a_{1}+a_{3}+a_{5}+\ldots .+a_{37}$ is equal to:
(1) $2^{20}\left(2^{20}+21\right)$
(2) $2^{19}\left(2^{20}+21\right)$
(3) $2^{20}\left(2^{20}-21\right)$
(4) $2^{19}\left(2^{20}-21\right)$

Ans. (4)
Sol. Put $x=1,-1$ and subtract
$4^{20}-2^{20}=\left(a_{0}+a_{1}+\ldots . .+a_{40}\right)-\left(a_{0}-a_{1}+\ldots \ldots.\right)$
$\Rightarrow 4^{20}-2^{20}=2\left(a_{1}+a_{3}+\ldots . .+a_{39}\right)$
$\Rightarrow a_{1}+a_{3}+\ldots . .+a_{37}=2^{39}-2^{19}-a_{39}$
$a_{39}=$ coeff of x^{39} in $\left(1+x+2 x^{2}\right)^{20}={ }^{20} C_{1} 2^{19}$
$\Rightarrow a_{1}+a_{3}+\ldots \ldots .+a_{37}=2^{39}-2^{19}-20\left(2^{19}\right)$
$=2^{39}-21\left(2^{19}\right)=2^{19}\left(2^{20}-21\right)$
19. Let $A+2 B=\left[\begin{array}{ccc}1 & 2 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 1\end{array}\right]$ and $2 A-B=\left[\begin{array}{ccc}2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2\end{array}\right]$. It $\operatorname{Tr}(A)$ denotes the sum of all diagonal elements of
the matrix A, then $\operatorname{Tr}(A)-\operatorname{Tr}(B)$ has value equal to:
(1) 0
(2) 1
(3) 3
(4) 2

Ans. (4)
Sol. $\quad t_{r}(A+2 B) \equiv t_{r}(A)+2 t_{r}(B)=-1$
and $\mathrm{t}_{\mathrm{r}}(2 \mathrm{~A}-\mathrm{B}) \equiv 2 \mathrm{t}_{\mathrm{r}}(\mathrm{A})-\mathrm{t}_{\mathrm{r}}(\mathrm{B})=3$
on solving (1) and (2) we get

$$
\begin{array}{ll}
& \mathrm{t}_{\mathrm{r}}(\mathrm{~A})=1, \quad \mathrm{t}_{\mathrm{r}}(\mathrm{~B})=-1 \\
\therefore \quad & \mathrm{t}_{\mathrm{r}}(\mathrm{~A})-\mathrm{t}_{\mathrm{r}}(\mathrm{~B})=1+1=2
\end{array}
$$

20. The equations of one of the straight lines which passes through the point (1,3) and makes an angle $\tan ^{-1}(\sqrt{2})$ with the straight line, $y+1=3 \sqrt{2} x$ is:
(1) $5 \sqrt{2} x+4 y-(15+4 \sqrt{2})=0$
(2) $4 \sqrt{2} x-5 y-(5+4 \sqrt{2})=0$
(3) $4 \sqrt{2} x+5 y-4 \sqrt{2}=0$
(4) $4 \sqrt{2} x+5 y-(15+4 \sqrt{2})=0$

Ans. (4)
Sol. $\quad \tan \left(\tan ^{-1} \sqrt{2}\right)=\left|\frac{m-3 \sqrt{2}}{1+3 m \sqrt{2}}\right|$

$$
\sqrt{2}=\left|\frac{m-3 \sqrt{2}}{1+3 m \sqrt{2}}\right|
$$

$6 m+\sqrt{2}=m-3 \sqrt{2}$
$5 m=-4 \sqrt{2}$
$m=-\frac{4 \sqrt{2}}{5}$

$$
-6 m-\sqrt{2}=m-3 \sqrt{2}
$$

$$
2 \sqrt{2}=7 \mathrm{~m}
$$

$$
m=\frac{2 \sqrt{2}}{7}
$$

SECTION - B

1. The numbers of times al digit 3 will be written when listing the integers from 1 to 1000 is \qquad .
Ans. (300)
Sol. $\frac{3}{\uparrow} \frac{10}{\uparrow} \frac{10}{\uparrow}+\frac{9}{\uparrow} \frac{3}{\uparrow}+\frac{9}{\uparrow} \frac{10}{\uparrow} \underset{\uparrow}{3}$
$\Rightarrow 100+90+90$
$\Rightarrow 280$
$\left(\begin{array}{ll}\uparrow & \frac{10}{\uparrow}\end{array}\right)+\left(\begin{array}{ll}\frac{9}{\uparrow} & \overline{\uparrow_{3}}\end{array}\right) \Rightarrow 19$
$3 \rightarrow 1$
$280+19+1=300$
2. The equation of the planes parallel to the plane $x-2 y+2 z-3=0$ which are at unit distance from the point $(1,2,3)$ is $a x+b y+c z+d=0$. If $(b-d)=K(c-a)$, then the positive value of K is \qquad .
Ans. (4)
Sol. $x-2 y+2 z+\lambda=0$
Now given
$\mathrm{d}=\frac{|1-4+6+\lambda|}{\sqrt{9}}=1$
$|\lambda+3|=3$
$\lambda+3= \pm 3 \Rightarrow \lambda=0,-6$
So planes are: $x-2 y+2 z-6=0$

$$
x-2 y+2 z=0
$$

$b-d=-2+6=4$
$c-a=2-1=1$
$\Rightarrow \frac{\mathrm{b}-\mathrm{d}}{\mathrm{c}-\mathrm{a}}=\mathrm{k}$
$\Rightarrow \mathrm{k}=4$
3. Let $f(x)$ and $g(x)$ be two functions satisfying $f\left(x^{2}\right)+g(4-x)=4 x^{3}$ and $g(4-x)+g(x)=0$, then the value of $\int_{-4}^{4} f\left(x^{2}\right) d x$ is \qquad .

Ans. (512)

Sol. $I=2 \int_{0}^{4} f\left(x^{2}\right) d x$
$\Rightarrow \mathrm{I}=2 \int_{0}^{4} \mathrm{f}\left((4-\mathrm{x})^{2}\right) \mathrm{dx}$
Adding equation (1) \& (2)
$2 I=2 \int_{0}^{4}\left[f(x)^{2}+f(4-x)^{2}\right] d x$
Now using $f\left(x^{2}\right)+g(4-x)=4 x^{3}$
$x \rightarrow 4-x$
$f\left((4-x)^{2}\right)+g(x)=4(4-x)^{3}$
Adding equation (4) \& (5)
$f\left(x^{2}\right)+f\left(4-x^{2}\right)+g(x)+g(4-x)=4\left(x^{3}+(4-x)^{3}\right]$
$\Rightarrow f\left(x^{2}\right)+f\left(4-x^{2}\right)=4\left(x^{3}+(4-x)^{3}\right]$
Now, $I=4 \int_{0}^{4}\left(x^{3}+(4-x)^{3}\right) d x=512$

Sol.

$\mathrm{OA} \perp \mathrm{OB}$
$\Rightarrow\left(\frac{1}{\mathrm{p}^{2}}\right)\left(-\frac{1}{\mathrm{q}^{2}}\right)=-1$
$\Rightarrow \mathrm{p}^{2} \mathrm{q}^{2}=1$
$p\left(\frac{p+q}{2}, \frac{\frac{1}{p}-\frac{1}{q}}{2}\right)$ lies
On $x^{2} y^{2}=1$
$\Rightarrow(\mathrm{p}+\mathrm{q})^{2}\left(\frac{1}{\mathrm{p}}-\frac{1}{\mathrm{q}}\right)^{2}=16$
$\Rightarrow(p+q)^{2}(p-q)^{2}=16$
$\Rightarrow\left(p^{2}-q^{2}\right)^{2}=16$
$\Rightarrow \mathrm{P}^{2}-\frac{1}{\mathrm{P}^{2}}= \pm 4$
$\Rightarrow \mathrm{p}^{4} \pm 4 \mathrm{p}^{2}-1=0$
$\Rightarrow \mathrm{p}^{2}=\frac{ \pm 4 \pm \sqrt{20}}{2}= \pm 2 \pm \sqrt{5}$
$\Rightarrow \mathrm{p}^{2}=2+\sqrt{5}$ or $-2+\sqrt{5}$
$\mathrm{OB}^{2}=\mathrm{p}^{2}+\frac{1}{\mathrm{p}^{2}}=2+\sqrt{5}+\frac{1}{2+\sqrt{5}}$ or $-2+\sqrt{5}+\frac{1}{-2+\sqrt{5}}=2 \sqrt{5}$
Area $=4\left(\frac{1}{2}\right)(O A)(O B)=2(O B)^{2}=4 \sqrt{5}$
6. The missing value in the following figure is \qquad -.

Ans. (4)
Sol. $\quad 4^{24}$ has base $4(=12-8)$
36 has base $3(=7-4)$
(?) will have base $2(=5-3)$
Power $24=6 \times 4=($ no. of divisor of 12) $\times($ no. of divisor of 8$)$
Power $6=2 \times 3=($ no. of divisor of 7$) \times($ no. of divisor of 4$)$
$($?) will have power $=($ no. of divisor of 3$) \times($ no. of divisor of 5$)=2 \times 2=4$
7. The numbers of solutions of the equation $|\cot x|=\cot x+\frac{1}{\sin x}$ in the interval $[0,2 \pi]$ is \qquad -.
Ans. (1)
Sol. Case I : $x \in\left[0, \frac{\pi}{2}\right] \cup\left[\pi, \frac{3 \pi}{2}\right]$
$\cot x=\cot x+\frac{1}{\sin x} \Rightarrow$ not possible
Case II : $x \in\left[\frac{\pi}{2}, \pi\right] \cup\left[\frac{3 \pi}{2}, 2 \pi\right]$
$-\cot x=\cot x+\frac{1}{\sin x}$
$\Rightarrow \frac{-2 \cos x}{\sin x}=\frac{1}{\sin x}$
$\Rightarrow \cos x=\frac{-1}{2}$
$\Rightarrow x=\frac{2 \pi}{3}, \frac{4 \pi}{3}$
$=1$
8. Let z_{1}, z_{2} be the roots of the equations $z^{2}+a z+12=0$ and z_{1}, z_{2} form an equilateral triangle with origin. Then, the value of $|a|$ is \qquad _.
Ans. (6)
Sol. In equilateral Δ,

9. Let the plane $a x+b y+c z+d=0$ bisect the line joining the points $(4,-3,1)$ and $(2,3,-5)$ at the right angles. If a, b, c, d are integers, then the minimum value of $\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$ is \qquad -.

Ans. (28)
Sol. normal of plane $=\overrightarrow{\mathrm{PQ}}$

$$
=-2 \hat{i}+6 \hat{j}-6 \hat{k}
$$

$a=-2, b=6, c=-6$
\& equation of plane is
$-2 x+6 y-6 z+d=0$
$\Downarrow M(3,0,-2)$
$d=-6$

	$P(4,-3,1)$
	$M(3,0,-2)$
	$Q(2,3,-5)$

MOTION JEE MAIN 2021

Now equation of plane is
$-2 x+6 y-6 z-6=0$
$x-3 y+3 z+3=0$
$\Rightarrow\left(a^{2}+b^{2}+c^{2}+d^{2}\right)_{\text {min }}=1^{2}+9+9+9=28$
10. If $f(x)=\int \frac{5 x^{8}+7 x^{6}}{\left(x^{2}+1+2 x^{7}\right)^{2}} d x,(x \geq 0), f(0)=0$ and $f(1)=\frac{1}{k}$, then the value of K is \qquad -.

Ans. (4)
Sol. $\int \frac{5 x^{8}+7 x^{6}}{\left(2 x^{7}+x^{2}+1\right)^{2}} d x=\int \frac{5 x^{8}+7 x^{6}}{x^{14}\left(2+\frac{1}{x^{5}}+\frac{1}{x^{7}}\right)^{2}} d x$
$\int \frac{\frac{5}{x^{6}}+\frac{7}{x^{8}}}{\left(2+\frac{1}{x^{5}}+\frac{1}{x^{7}}\right)^{2}} d x$
put $2+\frac{1}{x^{5}}+\frac{1}{x^{7}}=t$
$\Rightarrow-\left(\frac{5}{x^{6}}+\frac{7}{x^{8}}\right) d x=d t$
$\int \frac{-\mathrm{dt}}{\mathrm{t}^{2}}=\frac{1}{\mathrm{t}}+\mathrm{c}$
$\Rightarrow f(x)=\frac{1}{2+\frac{1}{x^{5}}+\frac{1}{x^{7}}}+C=\frac{x^{7}}{2 x^{7}+1+x^{2}}+C$
$f(0)=0 \Rightarrow C=0$
$f(x)=\frac{1}{4}=\frac{1}{k}$
$\Rightarrow k=4$

Rिर्म मोगन केसाय

Another opportunity to strengthen your preparation

UNNATI CRASH COURSE JEE Main May 2021 at Kota Classroom

40 Classes of each subjects

Doubt Clearing sessions by Expert faculties
F Full Syllabus Tests to improve your question solving skills
Thorough learning of concepts with regular classes
Gettips \& trick along with sample papers

Course Fee : ₹ 20,000

Start your JEE Advanced 2021
Preparation with

UTTHAN CRASH COURSE at Kota Classroom

- Complete course coverage
- 55 Classes of each subject
- 17 Full \& 6 Part syllabus tests will strengthen your exam endurance
- Doubt clearing sessions under the guidance of expertfaculties
- Gettips \& trick along with sample papers

