

JEE I NEET I Foundation

MOTİON JEE MAIN 2021

1. Match List-I with List-II.

List - I

Chemical Compound
(a) Sucralose
(b) Glyceryl ester of stearic acid
(c) Sodium benzoate
(d) Bithionol

List - II

Used as
(i) Synthetic detergent
(ii) Artificial sweetener
(iii) Antiseptic
(iv) Food preservative

Choose the correct match:
(1) (a)-(i), (b)-(ii), (c)-(iv), (d)-(iii)
(2) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
(3) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
(4) (a)-(iii), (b)-(ii), (c)-(iv), (d)-(i)

Ans. (2)
Sol. (a) Sucralose \longrightarrow Artificial sweetener
(b) Glyceryl ester of stearic acid \longrightarrow Synthetic detergent
(c) Sodium benzoate \longrightarrow Food preservative
(d) Bithionol \longrightarrow Antiseptic
2. $\quad \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{\text {Sucrose }}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { Enzyme A }} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\underset{\text { Glu cose }}{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}$
$\underset{\text { Glucose }}{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \xrightarrow{\text { Enzyme } \mathrm{B}}-2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}, ~(1) ~}$
In the above reactions, the enzyme A and enzyme B respectively are:
(1) Invertase and Amylase
(2) Amylase and Invertase
(3) Invertase and Zymase
(4) Zymase and Invertase

Ans. (3)
Sol. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { Invertase }} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$\xrightarrow{\text { Zymase }} 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}$
3. The correct pair(s) of the ambident nucleophiles is (are) :
(A) $\mathrm{AgCN} / \mathrm{KCN}$
(B) $\mathrm{RCOOAg} / \mathrm{RCOOK}$
(C) $\quad \mathrm{AgNO}_{2} / \mathrm{KNO}_{2}$
(D) $\mathrm{AgI} / \mathrm{KI}$
(1)
(A) and (C) only
(2) (B) only
(3)
(B) and (C) only
(4) (A) only

Ans. (1)
Sol.

$$
\begin{aligned}
& \stackrel{\ominus}{\mathrm{C}}=\AA \mathrm{N} \\
& \stackrel{\ominus}{\mathrm{O}}-\mathrm{N}=\stackrel{\circ}{\mathrm{O}} \stackrel{2}{ }
\end{aligned}
$$

More than one e^{0} donating side

4. During which of the following processes, does entropy decrease?
(A) Freezing of water to ice at $0^{\circ} \mathrm{C}$
(B) Freezing of water to ice at $-10^{\circ} \mathrm{C}$
(C) $\quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
(D) Adsorption of $\mathrm{CO}(\mathrm{g})$ on lead surface.
(E) Dissolution of NaCI in water
(1) (A), (B), (C) and (D) only
(2) (A),
(C) and (E) only
(3) (A) and (E) only
(4) (B) and (C) only

Ans. (1)
Sol. A, B \rightarrow Freezing of water will decrease entropy as particles will move closer and forces of attraction will increase. This leads to decrease in randomness. So entropy decrease.
$C \rightarrow$ No. of molecules decreasing
D \rightarrow Adsorption will lead to decrease in randomness of gaseous particles.
$\mathrm{E} \rightarrow \mathrm{NaCl}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \Delta \mathrm{S}>0$
So, (A, B, C, D) decreases entropy.
5. Match List-I with List-II :

List-I

(a) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$
(b) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$
(c) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
(d) cis- $\left[\mathrm{CrCl}_{2}(\mathrm{ox})_{2}\right]^{3-}$

List-II

(i) Linkage isomerism
(ii) Solvate isomerism
(iii) Co-ordination isomerism
(iv) Optical isomerism

Choose the correct answer from the options given below:

1. (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)
2. (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
3. (a)-(ii), (b)-(i), (c)-(iii), (d)-(iv)
4. (a)-(iv), (b)-(ii), (c)-(iii), (d)-(i)

Ans. (1)
Sol. Theory based

MOTİON JEE MAIN 2021

6. The common positive oxidation states for an element with atomic number 24, are:
(1) +1 and +3
(2) +1 to +6
(3) +1 and +3 to +6
(4) +2 to +6

Ans. (4)
Sol. Fact
7. The set of elements that differ in mutual relationship from those of the other sets is :
(1) $\mathrm{Be}-\mathrm{Al}$
(2) $\mathrm{Li}-\mathrm{Na}$
(3) $\mathrm{B}-\mathrm{Si}$
(4) Li - Mg

Ans. (2)
Sol. Li and Na does not have diagonal relationship.
8. Given below are two statements :

Statement I : 2-methylbutane on oxidation with KMnO_{4} gives 2-methylbutan-2-ol.
Statement II : N-alkanes can be easily oxidized to corresponding alcohols with KMnO_{4}.
Choose the correct option :
(1) Both statement I and statement II are incorrect
(2) Statement I is correct but statement II is incorrect
(3) Both statement I and statement II are correct
(4) Statement I is incorrect but statement II is correct

Ans. (2)
Sol.

n-Alkanes $\xrightarrow{\mathrm{KMnO}_{4}}$ No reaction
9. Amongst the following, the linear species is:
(1) N_{3}^{-}
(2) $\mathrm{Cl}_{2} \mathrm{O}$
(3) O_{3}
(4) NO_{2}

Ans. (1)
Sol. (1) $\bar{N}=\stackrel{+}{N}=\bar{N} \quad$ SP(linear)
(2)

sp^{3} (Bent)
(3)

sp^{2} (Bent)
(4)

sp^{2} (Bent)
10. For the coagulation of a negative sol, the species below, that has the highest flocculating power is :
(1) SO_{4}^{2-}
(2) Na^{+}
(3) Ba^{2+}
(4) PO_{4}^{3-}

Ans. (3)
Sol. For a negative sol, positive ion is required for flocculation.
Greater the valence of the flocculating ion added, the greater is its power to cause precipitation. This is called Hardy-Schulz law.
So, Ba^{+2} has highest flocculating power.
11. The functional groups that are responsible for the ion-exchange property of cation and anion exchange resins, respectively, are:
(1) $-\mathrm{SO}_{3} \mathrm{H}$ and -COOH
(2) $-\mathrm{SO}_{3} \mathrm{H}$ and $-\mathrm{NH}_{2}$
(3) $-\mathrm{NH}_{2}$ and $-\mathrm{SO}_{3} \mathrm{H}$
(4) $-\mathrm{NH}_{2}$ and -COOH

Ans. (2)
Sol. $-\mathrm{SO}_{3} \mathrm{H}$ and -COOH are cation exchanger and $-\mathrm{NH}_{2}$ is anion exchanger.
12. Choose the correct statement regarding the formation of carbocations A and B given.

MOTÎON JEE MAIN 2021

(1) Carbocation A is more stable and formed relatively at faster rate
(2) Carbocation B is more stable and formed relatively at faster rate
(3) Carbocation A is more stable and formed relatively at slow rate
(4) Carbocation B is more stable and formed relatively at slow rate

Ans. (2)
Sol. B carbocation is more stable due to more hyperconjugation \& it form relatively faster rate compared to A.
13.

In the above reaction, the structural formula of $(A), ~ " X$ " and " Y " respectively are:
(1)

(2)

(4)

Ans. (2)

Sol.

14. Fructose is an example of :
(1) Heptose
(2) Aldohexose
(3) Pyranose
(4) Ketohexose

Ans. (4)
Sol. Fructose is an example of Ketohexose.
15. Which of the following statement(s) is (are) incorrect reason for eutrophication?
(A) excess usage of fertilisers
(B) excess usage of detergents
(C) dense plant population in water bodies
(D) lack of nutrients in water bodies that prevent plant growth

Choose the most appropriate answer from the option given below :
(1)
(D) only
(2) (C) only
(3)
(B) and (D) only
(4) (A) only

Ans. (1)
Sol. Lack of nutrients in water bodies that prevent plant growth.

MOTION JEE MAIN 2021

16. Primary, secondary and tertiary amines can be separated using :
(1) Para-Toluene sulphonyl chloride
(2) Chloroform and KOH
(3) Acetyl amide
(4) Benzene sulphonic acid

Ans. (1)

Sol.

17. Match List-I with List-II

List-I
(a) Haematite
(b) Bauxite
(c) Magnetite
(d) Malachite

List-II
(i) $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$
(ii) $\mathrm{Fe}_{2} \mathrm{O}_{3}$

Choose the correct answer from the options given below:
(1) (a)-(ii), (b)-(iii), (c)-(i), (d)-(iv)
(2) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
(3) (a)-(i), (b)-(iii), (c)-(ii), (d)-(iv)
(4) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)

Ans. (4)
Sol. Fact
18. The set that represents the pair of neutral oxides of nitrogen is:
(1) NO and $\mathrm{N}_{2} \mathrm{O}$
(2) NO and NO_{2}
(3) $\quad \mathrm{N}_{2} \mathrm{O}$ and NO_{2}
(4) $\mathrm{N}_{2} \mathrm{O}$ and $\mathrm{N}_{2} \mathrm{O}_{3}$

Ans. (1)
Sol. NO and $\mathrm{N}_{2} \mathrm{O}$ are neutral oxides and $\mathrm{N}_{2} \mathrm{O}_{3}, \mathrm{NO}_{2}$ and $\mathrm{N}_{2} \mathrm{O}_{5}$ are acidic oxides.
19. Nitrogen can be estimated by Kjeldahl's method for which of the following compound?
(1)

(2)

(4)

Ans. (4)

Sol.

20. One of the by-products formed during the recovery of NH_{3} from Solvay process is:
(1) NaHCO_{3}
(2) $\mathrm{Ca}(\mathrm{OH})_{2}$
(3) $\quad \mathrm{CaCl}_{2}$
(4) $\mathrm{NH}_{4} \mathrm{Cl}$

Ans. (3)
Sol. Recovery of NH_{3}
$2 \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{Ca}(\mathrm{OH})_{2} \longrightarrow \mathrm{CaCl}_{2}+2 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}$

Section-B

1. The reaction $2 A+B_{2} \rightarrow 2 A B$ is an elementary reaction.

For a certain quantity of reactants, if the volume of the reaction vessel is reduced by a factor of 3 , the rate of the reaction increases by a factor of \qquad (Round off to the Nearest Integer).
Ans. 27
Sol. For elementary reaction,
Rate of reaction $=\mathrm{K}[\mathrm{A}]^{2}\left[\mathrm{~B}_{2}\right]$
Initial rate $=K\left(\frac{n_{A}}{V_{0}}\right)^{2}\left(\frac{n_{B}}{V_{0}}\right)$
Final rate $=K\left(\frac{n_{A}}{V_{0} / 3}\right)^{2}\left(\frac{n_{B}}{V_{0} / 3}\right)=27 K\left(\frac{n_{A}}{V_{0}}\right)\left(\frac{n_{B}}{V_{0}}\right)$
\Rightarrow Final rate $=27 \times$ Initial rate
2. In the ground state of atomic $\operatorname{Fe}(Z=26)$, the spin-only magnetic moment is \qquad $\times 10^{-1}$ BM. (Round off to the Nearest Integer).
[Given : $\sqrt{3}=1.73, \sqrt{2}=1.41$]

Ans. 49
Sol. Fe : $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} 4 s^{2}$
In $3 d^{6}$, no. of unpaired $e^{-}=4$
Spin only magnetic moment $=\sqrt{n(n+2)}$

$$
\begin{aligned}
& =\sqrt{4(4+2)} \\
& =\sqrt{24} \\
& =4.9 \\
& =49 \times 10^{-1}
\end{aligned}
$$

3.

0.140 g
0.388 g
0.210 g

Consider the above reaction. The percentage yield of amide product is \qquad (Round off to the Nearest Integer)
[Given : Atomic mass : C : $12.0 \mathrm{u}, \mathrm{H}: 1.0 \mathrm{u}, \mathrm{N}: 14.0, \mathrm{O}: 16.0 \mathrm{u}, \mathrm{Cl}: 35.5 \mathrm{u}$]

निपिल्स तैव का सर्वश्रेष्त परिणाम सिर्फ मोशन के साथ

Ans. 77

Sol.

$$
0.14 \mathrm{gm} \quad 0.388 \mathrm{~g} \quad 0.21 \mathrm{gm}
$$

$\frac{0.14}{140.5} \mathrm{~mol}$	$\frac{0.388}{1600} \mathrm{~mol}$
$10^{-3} \mathrm{~mol}$	2.29×10^{-3}
L.R.	

Stoichiometric moles of amide $=10^{-3} \mathrm{~mol}$
Actual moles of amide $=7.69 \times 10^{-4} \mathrm{~mol}$
$\%$ yield $=\frac{7.69 \times 10^{-4}}{10^{-3}} \times 100$
= 76.9\%
$\simeq 77 \%$
4. On complete reaction of FeCl_{3} with oxalic acid in aqueous solution containing KOH , resulted in the formation of product A. The secondary valency of Fe in the product A is \qquad
(Round off to the Nearest Integer)
Ans. (6)
Sol. $\mathrm{FeCl}_{3}+3 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+6 \mathrm{KOH} \longrightarrow \mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]+3 \mathrm{KCl}+6 \mathrm{H}_{2} \mathrm{O}$
(A)
$C N=6$
S.V. = C.N
5. Consider the reaction $N_{2} O_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)$. The temperature at which $\mathrm{K}_{\mathrm{C}}=20.4$ and $\mathrm{K}_{\mathrm{p}}=600.1$, is
\qquad K. (Round off to the Nearest Integer).
[Assume all gases are ideal and $R=0.0831 \mathrm{Lbar} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$]
Ans. 354
Sol. $K_{P}=K_{C}(R T)^{\Delta n_{g}}, \Delta n_{g}=1$ (for given reaction)
$600.1=20.4(R T)^{1}$
$\Rightarrow T \approx 354 K$

MOTION JEE MAIN 2021

6. A KCl solution of conductivity $0.14 \mathrm{~S} \mathrm{~m}^{-1}$ shows a resistance of 4.19Ω inn a conductivity cell. If the same cell is filled with an HCl solution, the resistance drops 1.03Ω. The conductivity of the HCl solution is \qquad $\times 10^{-2} \mathrm{~S} \mathrm{~m}^{-1}$. (Round off to the Nearest Integer).
Ans. 56
Sol. For KCl solution,
$\mathrm{R}=\left(\frac{1}{\mathrm{~K}}\right)\left(\frac{\ell}{\mathrm{A}}\right) \Rightarrow \frac{\ell}{\mathrm{A}}=\mathrm{R} \times \mathrm{K}=4.19 \times 0.14$
$=0.58$
For HCl solution,
$R=\left(\frac{1}{K}\right)\left(\frac{\ell}{A}\right)$
$\Rightarrow K=\frac{(\ell / A)}{R}=\frac{0.58}{1.03}=0.56=56 \times 10^{-2} \mathrm{Sm}^{-1}$
Ans $=56$
7. \quad A 1 molal $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$ solution has a degree of dissociation of 0.4 . Its boiling point is equal to that of another solution which contains 18.1 weight percent of a non-electrolytic solute A. The molar mass of A is \qquad u. (Round off to the Nearest Integer).
[Density of water $=1.0 \mathrm{~g} \mathrm{~cm}^{-3}$]

Ans. 85

Sol. Since boiling point is same,
\Rightarrow elevation in boiling point is also same for both solution.
$\left(\Delta \mathrm{T}_{\mathrm{B}}\right)_{\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]}=\left(\Delta \mathrm{T}_{\mathrm{B}}\right)_{\mathrm{A}}$
$\Rightarrow\left(\mathrm{ik}_{\mathrm{b}} \mathrm{m}\right)_{\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]}=\left(\mathrm{ik}_{\mathrm{b}} \mathrm{m}\right)_{\mathrm{A}}$
$(1+4 \alpha) \times 1=\frac{1 \times \frac{18.1}{M} \times 1000}{100-18.1}$
$\Rightarrow 2.6=\frac{18.1}{M} \times \frac{1000}{81.9}$
$\Rightarrow M=85$
8. The number of chlorine atoms in 20 mL of chlorine gas at STP is \qquad 10^{21}. (Round off to the Nearest Integer).
[Assume chlorine is an ideal gas at STP
$\mathrm{R}=0.083 \mathrm{~L} \mathrm{bar} \mathrm{mol}^{-1} \mathrm{~K}^{-1}, \mathrm{~N}_{\mathrm{A}}=6.023 \times 10^{23}$]
Ans. 1
Sol. $n=\frac{P V}{R T}$
$=\frac{1 \times 20 \times 10^{-3}}{0.083 \times 273}$
No. of atoms $=\frac{1 \times 20 \times 10^{-3}}{0.083 \times 273} \times 2 \times 6.023 \times 10^{23}$
$=1.06 \times 10^{21}$
9. KBr is doped with 10^{-5} mole percent of SrBr_{2}. The number of cationic vacancies in 1 g of KBr crystal is \qquad 10^{14}. (Round off to the Nearest Integer).
[Atomic Mass : K = $39.1 \mathrm{u}, \mathrm{Br}=79.9 \mathrm{u}$
$\mathrm{N}_{\mathrm{A}}=6.023 \times 10^{23}$]
Ans. 5
Sol. For every Sr^{+2} ion, 1 cationic vacancy is created. Hence, no. of Sr^{+2} ion $=$ Number of cationic vacancies
Since mole percentage of SrBr_{2} dopped is 10^{-5} to that of total moles of KBr .
Hence,
No. of cationic vacancy $=\frac{10^{-5}}{100} \times \frac{1}{119} \times N_{A}$
$=\frac{1}{119} \times 10^{-7} \times 6.022 \times 10^{23}$
$=5 \times 10^{-2} \times 10^{-7} \times 10^{23}=5 \times 10^{14}$
Ans. 5
10. The total number of $\mathrm{C}-\mathrm{C}$ sigma bond/s in mesityl oxide $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}\right)$ is (Round off to the Nearest Integer).
Ans. (5)
Sol.

सिपिलस्रैप का सर्वश्रेष्त परिणाम Rिर्प मोगन केसाय

Another opportunity to strengthen your preparation

UNNATI CRASH COURSE JEE Main May 2021 at Kota Classroom

40 Classes of each subjects

- Doubt Clearing sessions by Expert faculties
- Full Syllabus Tests to improve your question solving skills
Thorough learning of concepts with regular classes
Gettips \& trick along with sample papers

Course Fee : ₹ 20,000

Start your JEE Advanced 2021

Preparation with

UTTHAN CRASH COURSE at Kota Classroom

- Complete course coverage
- 55 Classes of each subject
- 17 Full \& 6 Part syllabus tests will strengthen your exam endurance
- Doubt clearing sessions under the guidance of expert faculties
- Gettips \& trick along with sample papers

